双重反转动量指数策略是一种结合了123反转策略和相对动量指数(RMI)策略的组合策略。它旨在通过利用双重信号提高交易决策的准确性。
该策略由两部分组成:
123反转策略
相对动量指数(RMI)策略
该组合策略只有当123反转和RMI双重信号同向发出时,才会产生交易信号。这可以有效减少错误交易的机会。
该策略具有以下优势:
该策略也存在一些风险:
可以通过调整参数组合、优化指标计算方式来降低这些风险。
该策略还可以从以下几个方面进行优化:
双重反转动量指数策略通过双重信号过滤和参数优化,能够有效地提高交易决策的准确性,降低错误信号的概率。它适用于震荡行情,能挖掘反转机会。该策略可以通过调整参数和优化指标计算方式来进一步增强效果和 laps 风险。
/*backtest start: 2024-01-06 00:00:00 end: 2024-02-05 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 //////////////////////////////////////////////////////////// // Copyright by HPotter v1.0 07/06/2021 // This is combo strategies for get a cumulative signal. // // First strategy // This System was created from the Book "How I Tripled My Money In The // Futures Market" by Ulf Jensen, Page 183. This is reverse type of strategies. // The strategy buys at market, if close price is higher than the previous close // during 2 days and the meaning of 9-days Stochastic Slow Oscillator is lower than 50. // The strategy sells at market, if close price is lower than the previous close price // during 2 days and the meaning of 9-days Stochastic Fast Oscillator is higher than 50. // // Second strategy // The Relative Momentum Index (RMI) was developed by Roger Altman. Impressed // with the Relative Strength Index's sensitivity to the number of look-back // periods, yet frustrated with it's inconsistent oscillation between defined // overbought and oversold levels, Mr. Altman added a momentum component to the RSI. // As mentioned, the RMI is a variation of the RSI indicator. Instead of counting // up and down days from close to close as the RSI does, the RMI counts up and down // days from the close relative to the close x-days ago where x is not necessarily // 1 as required by the RSI). So as the name of the indicator reflects, "momentum" is // substituted for "strength". // // WARNING: // - For purpose educate only // - This script to change bars colors. //////////////////////////////////////////////////////////// Reversal123(Length, KSmoothing, DLength, Level) => vFast = sma(stoch(close, high, low, Length), KSmoothing) vSlow = sma(vFast, DLength) pos = 0.0 pos := iff(close[2] < close[1] and close > close[1] and vFast < vSlow and vFast > Level, 1, iff(close[2] > close[1] and close < close[1] and vFast > vSlow and vFast < Level, -1, nz(pos[1], 0))) pos RMI(Length,BuyZone, SellZone) => pos = 0.0 xMU = 0.0 xMD = 0.0 xPrice = close xMom = xPrice - xPrice[Length] xMU := iff(xMom >= 0, nz(xMU[1], 1) - (nz(xMU[1],1) / Length) + xMom, nz(xMU[1], 1)) xMD := iff(xMom <= 0, nz(xMD[1], 1) - (nz(xMD[1],1) / Length) + abs(xMom), nz(xMD[1], 0)) RM = xMU / xMD nRes = 100 * (RM / (1+RM)) pos:= iff(nRes < BuyZone, 1, iff(nRes > SellZone, -1, nz(pos[1], 0))) pos strategy(title="Combo Backtest 123 Reversal & Relative Momentum Index", shorttitle="Combo", overlay = true) line1 = input(true, "---- 123 Reversal ----") Length = input(14, minval=1) KSmoothing = input(1, minval=1) DLength = input(3, minval=1) Level = input(50, minval=1) //------------------------- line2 = input(true, "---- Relative Momentum Index ----") LengthRMI = input(20, minval=1) BuyZone = input(40, minval=1) SellZone = input(70, minval=1) reverse = input(false, title="Trade reverse") posReversal123 = Reversal123(Length, KSmoothing, DLength, Level) posRMI = RMI(LengthRMI,BuyZone, SellZone) pos = iff(posReversal123 == 1 and posRMI == 1 , 1, iff(posReversal123 == -1 and posRMI == -1, -1, 0)) possig = iff(reverse and pos == 1, -1, iff(reverse and pos == -1 , 1, pos)) if (possig == 1 ) strategy.entry("Long", strategy.long) if (possig == -1 ) strategy.entry("Short", strategy.short) if (possig == 0) strategy.close_all() barcolor(possig == -1 ? #b50404: possig == 1 ? #079605 : #0536b3 )