3 10震荡器轮廓标记策略通过计算3日和10日简单移动平均线之间的差值作为MACD指标,结合成交量的分析来判断市场买卖盘的强弱,从而产生交易信号。该策略同时结合关键价格区域、成交量特征以及MACD指标的反转来确认进场和出场机会。
该策略的核心指标是MACD,它由一个快速移动平均线和一个慢速移动平均线组成。快速线是3日简单移动平均线,慢速线是10日简单移动平均线。它们之间的差值构成MACD柱状线。当快速线从下方向上突破慢速线时,代表买盘力量加强,产生买入信号;反之快速线从上方向下跌破慢速线时,卖盘力量加强,产生卖出信号。
另外,该策略结合每根K线的买入成交量和卖出成交量的大小关系,判断市场买卖盘的相对强弱。具体方法是:买入成交量 = 成交量 x (收盘价-最低价)÷(最高价-最低价);卖出成交量 = 成交量 x (最高价-收盘价)÷(最高价-最低价)。如果买入成交量显著大于卖出成交量,说明该根K线以较强的买盘结束,这是一个买入信号。
通过组合MACD指标和成交量分析,该策略可以有效判断市场的供需关系和蓄势 pending 方向。同时,策略还会验证价位是否处于关键区域、MACD是否有效反转以及买卖盘成交量差异是否够大等条件,从而过滤掉一些冲动操作的噪音,确保高概率和高效率的入场。
该策略最大的优势在于充分结合市场供需关系的判断。MACD柱状线可有效判断买卖盘力量对比和市场蓄势方向;成交量差异分析可清楚辨别买卖盘的主导力量。同时策略设置多重条件进行审核,避免追涨杀跌,确保获利概率较高。此外,策略内置止盈止损机制也可限制单笔损失。
上述风险可通过以下方法加以规避:准确判断市场主要趋势,避免在震荡盘中使用该策略;关注市场信息面,识别成交量被人为拉抬的情况;调整参数要慎重,可借鉴专业机构的建议。
该策略可从以下几个方面进行优化:
综上,可见本策略优化空间较大,投资者可根据自身情况和市场环境进行适当调整与改进,使策略效果更佳。
3 10震荡器轮廓标记策略成功融合了MACD分析、成交量比较以及多重条件过滤验证的思路。它判断供需关系和市场蓄势方向的能力较强,同时内置止盈止损机制控制风险。该策略优化空间大、应用前景广阔,值得投资者重点考虑和深入研究。
/*backtest start: 2024-01-01 00:00:00 end: 2024-01-31 23:59:59 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("3 10 Oscillator Profile Flagging", shorttitle="3 10 Oscillator Profile Flagging", overlay=true) signalBiasValue = input(title="Signal Bias", defval=0.26) macdBiasValue = input(title="MACD Bias", defval=0.8) shortLookBack = input( title="Short LookBack", defval=3) longLookBack = input( title="Long LookBack", defval=10) takeProfit = input( title="Take Profit", defval=0.75) stopLoss = input( title="Stop Loss", defval=0.5) fast_ma = ta.sma(close, 3) slow_ma = ta.sma(close, 10) macd = fast_ma - slow_ma signal = ta.sma(macd, 16) hline(0, "Zero Line", color = color.black) buyVolume = volume*((close-low)/(high-low)) sellVolume = volume*((high-close)/(high-low)) buyVolSlope = buyVolume - buyVolume[1] sellVolSlope = sellVolume - sellVolume[1] signalSlope = ( signal - signal[1] ) macdSlope = ( macd - macd[1] ) //plot(macdSlope, color=color.red, title="Total Volume") //plot(signalSlope, color=color.green, title="Total Volume") intrabarRange = high - low getLookBackSlope(lookBack) => signal - signal[lookBack] getBuyerVolBias(lookBack) => j = 0 for i = 1 to lookBack if buyVolume[i] > sellVolume[i] j += 1 j getSellerVolBias(lookBack) => j = 0 for i = 1 to lookBack if sellVolume[i] > buyVolume[i] j += 1 j getVolBias(lookBack) => float b = 0 float s = 0 for i = 1 to lookBack b += buyVolume[i] s += sellVolume[i] b > s getSignalBuyerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] > signalBiasValue j += 1 j getSignalSellerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < ( 0 - signalBiasValue ) j += 1 j getSignalNoBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < signalBiasValue and signal[i] > ( 0 - signalBiasValue ) j += 1 j getPriceRising(lookBack) => j = 0 for i = 1 to lookBack if close[i] > close[i + 1] j += 1 j getPriceFalling(lookBack) => j = 0 for i = 1 to lookBack if close[i] < close[i + 1] j += 1 j getRangeNarrowing(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] < intrabarRange[i + 1] j+= 1 j getRangeBroadening(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] > intrabarRange[i + 1] j+= 1 j bool isNegativeSignalReversal = signalSlope < 0 and signalSlope[1] > 0 bool isNegativeMacdReversal = macdSlope < 0 and macdSlope[1] > 0 bool isPositiveSignalReversal = signalSlope > 0 and signalSlope[1] < 0 bool isPositiveMacdReversal = macdSlope > 0 and macdSlope[1] < 0 bool hasBearInversion = signalSlope > 0 and macdSlope < 0 bool hasBullInversion = signalSlope < 0 and macdSlope > 0 bool hasSignalBias = math.abs(signal) >= signalBiasValue bool hasNoSignalBias = signal < signalBiasValue and signal > ( 0 - signalBiasValue ) bool hasSignalBuyerBias = hasSignalBias and signal > 0 bool hasSignalSellerBias = hasSignalBias and signal < 0 bool hasPositiveMACDBias = macd > macdBiasValue bool hasNegativeMACDBias = macd < ( 0 - macdBiasValue ) bool hasBullAntiPattern = ta.crossunder(macd, signal) bool hasBearAntiPattern = ta.crossover(macd, signal) bool hasSignificantBuyerVolBias = buyVolume > ( sellVolume * 1.5 ) bool hasSignificantSellerVolBias = sellVolume > ( buyVolume * 1.5 ) // 7.48 Profit 52.5% if ( hasSignificantBuyerVolBias and getPriceRising(shortLookBack) == shortLookBack and getBuyerVolBias(shortLookBack) == shortLookBack and hasPositiveMACDBias and hasBullInversion) strategy.entry("Short1", strategy.short, qty=10) strategy.exit("TPS", "Short1", limit=strategy.position_avg_price - takeProfit, stop=strategy.position_avg_price + stopLoss) // 32.53 Profit 47.91% if ( getPriceFalling(shortLookBack) and (getVolBias(shortLookBack) == false) and signalSlope < 0 and hasSignalSellerBias) strategy.entry("Long1", strategy.long, qty=10) strategy.exit("TPS", "Long1", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss)