This strategy is a trend-following strategy based on adaptive moving averages. It uses two DEMA moving averages with different periods to generate trading signals. The strategy will automatically adapt the timeframe for analysis based on the current period, allowing multi-timeframe tracking.
The strategy uses a fast DEMA line and a slow DEMA line to construct trading signals. The fast line has a period of tf and the slow line has a period of tf*2. A buy signal is generated when the fast line crosses above the slow line. A sell signal is generated when the fast line crosses below the slow line. This allows the strategy to track mid-to-long term trends. In addition, the strategy also uses a Hull double moving average filter to reduce noisy trades. Signals are only generated when the Hull filter agrees on directionality.
The biggest advantage of this strategy is that it can adapt to different periods automatically. It will choose the analysis timeframe from daily to weekly based on the current period. This makes the strategy suitable for a variety of market environments. In addition, the dual moving average structure can track trends effectively, and the dual filter increases signal quality. As a result, this strategy is very suitable for tracking mid-to-long term trends.
The main risk of this strategy comes from trend reversals. When the market transitions from a bull market to a bear market, the fast and slow lines may cross sharply downward, resulting in huge floating losses. In addition, the line filter may also miss out on some profitable opportunities. If the filter disagrees with the price directionality, those otherwise profitable signals will be skipped. As a result, this strategy mainly targets stable mid-to-long term trending markets.
The strategy can be optimized by adjusting the filter parameters or using other indicators as replacements. For example, MACD can be tested instead of HullMA, or the HullMA period parameters can be adjusted. Different parameter combinations can also be tested to find better fitted trading rules. In addition, volatility indicators can also be incorporated to control position sizing. Smaller positions can be taken when market volatility rises.
In conclusion, this is a very practical adaptive trend following strategy. It can automatically adjust the analysis timeframe for different periods and is suitable for trading across different time horizons. The dual moving average structure can steadily track trends, and the filter also improves signal quality. Overall, it is suitable for investors looking for steady mid-to-long term returns.
/*backtest start: 2024-01-01 00:00:00 end: 2024-01-24 23:59:59 period: 4h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=2 // //--------------------------------------------- //* Author - PPSingnal //* http://ppsignal.com //--------------------------------------------- // // strategy (title="PPSignal V4 (Auto Adaptive Times)", shorttitle="PPSignal V4", overlay=true) delayOffset = input(defval = 0, title = "Delay Open/Close MA (Forces Non-Repainting)", minval = 0, step = 1) //---------------------------------------- INICIO PPI ---------------------------------------- // - PARÁMETROS DE ENTRADA // SE DEFINE LA RESOLUCIÓN useRes1 = true setRes1 = true tf = timeframe.period == "60" ? 4 : timeframe.period == "240" ? 4 : timeframe.period == "D" ? 4 : timeframe.period == "W" ?4 : 4 // PRIMER DEMA type = "DEMA" src = close len = tf off = 0 lsma = 0 // SEGUNDA DEMA type2 = "DEMA" src2 = open len2 = tf off2 = 0 lsma2 = 0 // - INPUTS END //---------------------------------------- INICIO FUNCIONES ---------------------------------------- // RETORNA UNA MEDIA MOVIL (TYPE=TIPO / SRC = TIPO DE PRECIO / LEN=LONGITUD / LSMA=0) variant(type, src, len, lsma) => v1 = sma(src, len) // Simple v2 = ema(src, len) // Exponential v3 = wma(src, len) // Weighted v4 = vwma(src, len) // Volume Weighted v5 = na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len // Smoothed v6 = 2 * v2 - ema(v2, len) // Double Exponential v7 = 3 * (v2 - ema(v2, len)) + ema(ema(v2, len), len) // Triple Exponential v8 = wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len))) // Hull v9 = linreg(src, len, lsma) // Least Squares // return variant, defaults to SMA if input invalid. type=="EMA"?v2 : type=="WMA"?v3 : type=="VWMA"?v4 : type=="SMMA"?v5 : type=="DEMA"?v6 : type=="TEMA"?v7 : type=="HullMA"?v8 : type=="LSMA"?v9 : v1 // SuperSmoother filter // © 2013 John F. Ehlers a1 = exp(-1.414*3.14159 / len) b1 = 2*a1*cos(1.414*3.14159 / len) c2 = b1 c3 = (-a1)*a1 c1 = 1 - c2 - c3 v12 = 0.0 v12 := c1*(src + nz(src[1])) / 2 + c2*nz(v12[1]) + c3*nz(v12[2]) // RETORNA LA RESOLUCIÓN SETEADA Y SINO LA DEFAULT // 3H: 1min - 3min - 5min - 15min // DIARIO: 30 - 45 - 60 // SEMANAL: 120 - 180 - 240 - D reso(exp, use, res) => use ? request.security(syminfo.tickerid, timeframe.period=="1" ? "D" : timeframe.period=="3" ? "D" : timeframe.period=="5" ? "D" : timeframe.period=="15" ? "D" : timeframe.period=="30" ? "D" : timeframe.period=="45" ? "W" : timeframe.period=="60" ? "W" : timeframe.period=="120" ? "W" : timeframe.period=="180" ? "W" : timeframe.period=="240" ? "W" : timeframe.period=="D" ? "W" : "W", exp) : exp //---------------------------------------- FIN FUNCIONES ---------------------------------------- //---------------------------------------- INICIO VARIABLES ---------------------------------------- // DEMAS ma_short = reso(variant(type, src[off], len, lsma), useRes1, setRes1) ma_long = reso(variant(type2, src2[off2], len2, lsma2), useRes1, setRes1) //---------------------------------------- FIN VARIABLES ---------------------------------------- //---------------------------------------- FIN PPI ---------------------------------------- //---------------------------------------- PRIMER FILTRO ---------------------------------------- // Double HullMA scolor = false n=1 n2ma=2*wma(close,round(n/2)) nma=wma(close,n) diff=n2ma-nma sqn=round(sqrt(n)) n2ma1=2*wma(close[1],round(n/2)) nma1=wma(close[1],n) diff1=n2ma1-nma1 sqn1=round(sqrt(n)) n1=wma(diff,sqn) n2=wma(diff1,sqn) //---------------------------------------- FIN PRIMER FILTRO ---------------------------------------- //---------------------------------------- INICIO CONDICIONES ---------------------------------------- // CONDICION CON FILTRO cruce= (ma_short > ma_long) and n1>n2 ? true : ma_short < ma_long ? false : cruce[1] // Condition // FONDO DE COLOR bground = cruce ? white : red bgcolor(bground, transp=90) // BARRAS COLOREADAS barcol = cruce ? yellow : red barcolor(barcol, transp=0) closePlot = plot(ma_short, title = "Zone 1", color = gray, circles = 0, style = circles, transp = 100) openPlot = plot(ma_long, title = "Zone 2", color = green, circles = 0, style = circles, transp = 100) trendState = ma_short > ma_long ? true : ma_short < ma_long ? false : trendState[1] // channel fill closePlotU = plot(trendState ? ma_short : na, transp = 100, editable = false) openPlotU = plot(trendState ? ma_long : na, transp = 100, editable = false) closePlotD = plot(trendState ? na : ma_short, transp = 100, editable = false) openPlotD = plot(trendState ? na : ma_long, transp = 100, editable = false) fill(openPlotU, closePlotU, title = "Up Trend Fill", color = yellow, transp = 70) fill(openPlotD, closePlotD, title = "Down Trend Fill", color = red, transp = 70) //---------------------------------------- FIN CONDICIONES ---------------------------------------- //---------------------------------------- INICIO ESTRATEGIA ---------------------------------------- //CONDICION COMPRA longCond = (ma_short > ma_long) and n1>=n2 //CONDICION VENTA shortCond = (ma_short < ma_long) //ABRO COMPRA A strategy.entry("Bull Trend", strategy.long, when = longCond) //ABRO VENTA A strategy.entry("Bearish Trend", strategy.short, when = shortCond) //CIERRO VENTA A strategy.exit("Exit Short", from_entry = "Bull Trend", when = shortCond) //CIERRO COMPRA A strategy.exit("Exit Long", from_entry = "Bearish Trend", when = longCond) //---------------------------------------- FIN ESTRATEGIA ----------------------------------------