本策略通过计算不同时间窗口内的成交量买卖压力差异,结合MACD指标的多空信号,设计了一套趋势反转型的交易策略。该策略主要利用成交量的异动作为判断趋势反转的信号,并通过MACD的多空信号进行验证,从而捕捉反转机会。
该策略的核心逻辑基于以下几点:
计算不同时间窗口(长短窗口)内的成交量买入压力和卖出压力。通过买卖压力的差异判断未来趋势方向。
利用MACD的差值(MACD线与信号线的差距)判断多空状态。结合成交量的买卖压力信号,验证趋势反转。
当成交量买入压力异动放大,且MACD线发生穿越时,认为行情可能出现由空转多的趋势反转。
当成交量卖出压力异动放大,且MACD线发生穿越时,认为行情可能出现由多转空的趋势反转。
进入反转信号后,利用止盈止损策略控制风险。
该策略具有以下几点优势:
利用成交量的多空差异判断趋势反转点,避免单纯依赖均线等趋势判断指标而忽略成交量的作用。
结合MACD指标的多空信号验证反转,可以提高判断的准确性。
运用长短时间窗口判断成交量的异动方向,使反转信号更加可靠。
反转型策略的平均盈利率较高。
该策略也存在以下风险:
成交量和MACD信号都可能发出错误信号,从而导致反转判断失误的风险。
反转信号发出后,行情可能再次调整,无法直接反转的风险。
止盈止损点设定不当,可能导致亏损扩大的风险。
回撤率较高,不适合追求稳定收益的投资者。
该策略可以从以下几个方面进行优化:
优化长短时间窗口的区间,使反转判断更加精确。
优化MACD参数,提高多空判断的准确性。
优化止盈止损算法,降低亏损风险。
增加更多异动判断指标,提高反转成功率。
增加仓位控制和资金管理模块。
本策略总体来说是一个典型的趋势反转型算法交易策略。它主要依靠成交量的异动放大与MACD信号的验证,判断并捕捉价格从多头进入空头或者从空头转向多头的反转机会。该策略具有判断准确率较高,收益率较好的优点,但也存在一定的风险。通过参数优化与功能扩展,可以使该策略的表现更加出色。
/*backtest start: 2024-01-26 00:00:00 end: 2024-02-25 00:00:00 period: 4h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("3 10 Oscillator Profile Flagging", shorttitle="3 10 Oscillator Profile Flagging", overlay=false) signalBiasValue = input(title="Signal Bias", defval=0.26) macdBiasValue = input(title="MACD Bias", defval=0.8) shortLookBack = input( title="Short LookBack", defval=3) longLookBack = input( title="Long LookBack", defval=10) takeProfit = input( title="Take Profit", defval=0.75) stopLoss = input( title="Stop Loss", defval=0.5) fast_ma = ta.sma(close, 3) slow_ma = ta.sma(close, 10) macd = fast_ma - slow_ma signal = ta.sma(macd, 16) hline(0, "Zero Line", color = color.black) buyVolume = volume*((close-low)/(high-low)) sellVolume = volume*((high-close)/(high-low)) buyVolSlope = buyVolume - buyVolume[1] sellVolSlope = sellVolume - sellVolume[1] signalSlope = ( signal - signal[1] ) macdSlope = ( macd - macd[1] ) plot(macd, color=color.blue, title="Total Volume") plot(signal, color=color.orange, title="Total Volume") intrabarRange = high - low getLookBackSlope(lookBack) => signal - signal[lookBack] getBuyerVolBias(lookBack) => j = 0 for i = 1 to lookBack if buyVolume[i] > sellVolume[i] j += 1 j getSellerVolBias(lookBack) => j = 0 for i = 1 to lookBack if sellVolume[i] > buyVolume[i] j += 1 j getVolBias(lookBack) => float b = 0 float s = 0 for i = 1 to lookBack b += buyVolume[i] s += sellVolume[i] b > s getSignalBuyerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] > signalBiasValue j += 1 j getSignalSellerBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < ( 0 - signalBiasValue ) j += 1 j getSignalNoBias(lookBack) => j = 0 for i = 1 to lookBack if signal[i] < signalBiasValue and signal[i] > ( 0 - signalBiasValue ) j += 1 j getPriceRising(lookBack) => j = 0 for i = 1 to lookBack if close[i] > close[i + 1] j += 1 j getPriceFalling(lookBack) => j = 0 for i = 1 to lookBack if close[i] < close[i + 1] j += 1 j getRangeNarrowing(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] < intrabarRange[i + 1] j+= 1 j getRangeBroadening(lookBack) => j = 0 for i = 1 to lookBack if intrabarRange[i] > intrabarRange[i + 1] j+= 1 j bool isNegativeSignalReversal = signalSlope < 0 and signalSlope[1] > 0 bool isNegativeMacdReversal = macdSlope < 0 and macdSlope[1] > 0 bool isPositiveSignalReversal = signalSlope > 0 and signalSlope[1] < 0 bool isPositiveMacdReversal = macdSlope > 0 and macdSlope[1] < 0 bool hasBearInversion = signalSlope > 0 and macdSlope < 0 bool hasBullInversion = signalSlope < 0 and macdSlope > 0 bool hasSignalBias = math.abs(signal) >= signalBiasValue bool hasNoSignalBias = signal < signalBiasValue and signal > ( 0 - signalBiasValue ) bool hasSignalBuyerBias = hasSignalBias and signal > 0 bool hasSignalSellerBias = hasSignalBias and signal < 0 bool hasPositiveMACDBias = macd > macdBiasValue bool hasNegativeMACDBias = macd < ( 0 - macdBiasValue ) bool hasBullAntiPattern = ta.crossunder(macd, signal) bool hasBearAntiPattern = ta.crossover(macd, signal) bool hasSignificantBuyerVolBias = buyVolume > ( sellVolume * 1.5 ) bool hasSignificantSellerVolBias = sellVolume > ( buyVolume * 1.5 ) // 7.48 Profit 52.5% if ( hasSignificantBuyerVolBias and getPriceRising(shortLookBack) == shortLookBack and getBuyerVolBias(shortLookBack) == shortLookBack and hasPositiveMACDBias and hasBullInversion) strategy.entry("Short1", strategy.short, qty=10) strategy.exit("TPS", "Short1", limit=strategy.position_avg_price - takeProfit, stop=strategy.position_avg_price + stopLoss) // 32.53 Profit 47.91% if ( getPriceFalling(shortLookBack) and (getVolBias(shortLookBack) == false) and signalSlope < 0 and hasSignalSellerBias) strategy.entry("Long1", strategy.long, qty=10) strategy.exit("TPS", "Long1", limit=strategy.position_avg_price + takeProfit, stop=strategy.position_avg_price - stopLoss)