该策略通过组合使用SMA、EMA、KAMA等多种移动平均线,识别价格趋势方向,以及基于价格突破设置止损线,设计一个跟踪趋势运行的策略。当价格上涨时, trails the upper band作为止损;当价格下跌时,trails the 下限作为止损。策略优点是多种移动平均线组合,可以平滑价格数据,识别趋势;动态止损设计避免止损过于敏感。策略风险在于止损线Setting可能过于宽松,无法及时止损。
该策略使用KAMA作为判断趋势方向的基础指标,因为KAMA响应价格变化更加敏感,可以提早识别转折。同时,策略中包含了SMA、EMA等其他多种移动平均线的组合,可以对价格进行滤波,识别主要趋势方向。
策略的止损线设置基于价格本身以及移动平均线。具体来说,向上追踪的止损线为移动平均线再叠加一个比例作为缓冲;向下追踪的止损线为移动平均线减去一个比例作为缓冲。这样可以实现当价格出现反转时,立即止损。
进入条件为,当价格由下向上突破上行止损线时做多;当价格由上向下突破下行止损线时做空。
该策略最大的优势在于,通过多种移动平均线的组合,可以提高对趋势判断的准确性,减少假信号。同时,策略的止损线是基于移动平均线动态变化的,能够根据实时价格调整,实现对突发事件的响应。
此外,相比于单一指标策略,该策略融合了趋势跟踪和突破策略的优点。在趋势行情中,可以最大程度获利;而在震荡行情中,通过止损设定可以减少损失。
该策略的主要风险在于,止损线设置可能过于宽松,无法及时止损。这是因为止损线的回撤比例是固定设置的,如果行情出现剧烈变化,无法及时更新止损线,可能带来较大亏损。
此外,Moving Average本身滞后性很强,无法对价格变化做出即时反应。这也可能导致在行情快速反转时,无法及时止损。
该策略可以从以下几个方面进行优化:
测试不同参数设置下的止损线比例,找到更优参数组合;
尝试将止损线设置为动态变化,根据市场波动程度做出调整;
增加其他指标判断,在止损 Basis 上引入更多变量,提高策略的适应性;
4.优化移动平均线的周期参数,找到最佳平滑价格的周期设置。
本策略整体来说较为稳健,通过多种移动平均线组合判断趋势方向,并设计动态追踪止损机制,旨在跟踪趋势运行。优点是可以减少假信号,通过止损控制风险;劣势是止损线可能设置过宽,无法迅速止损。下一步优化策略应在止损线设计上下功夫,使之能够根据市场变化进行动态调整。
/*backtest start: 2023-02-22 00:00:00 end: 2024-02-28 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy('Atlantean Trend Signal BUY SELL Strategy', overlay=true) ma_length = input.int(title='Moving Average Length', minval=1, defval=3) percent = input.float(3.3, 'STOP LOSS Percent', step=0.1, minval=0) src = input(title='Source', defval=close) mav = input.string(title="Moving Average Type", defval="KAMA", options=["SMA", "EMA", "WMA", "DEMA", "TMA", "VAR", "WWMA", "ZLEMA", "TSF", "HULL", "TILL", "KAMA"]) T3a1 = 0.7 _type = false //input(false, title='Activate Moving Average Screening Mode') _type1 = false //input(false, title='Activate Moving Average Color Change Screening Mode') activateScreener = input.bool(false, title="Activate Screener?") showsignallabels = input(title='Show Signal Labels?', defval=true) Var_Func(src, ma_length) => valpha = 2 / (ma_length + 1) vud1 = src > src[1] ? src - src[1] : 0 vdd1 = src < src[1] ? src[1] - src : 0 vUD = math.sum(vud1, 9) vDD = math.sum(vdd1, 9) vCMO = nz((vUD - vDD) / (vUD + vDD)) VAR = 0.0 VAR := nz(valpha * math.abs(vCMO) * src) + (1 - valpha * math.abs(vCMO)) * nz(VAR[1]) VAR VAR = Var_Func(src, ma_length) DEMA = 2 * ta.ema(src, ma_length) - ta.ema(ta.ema(src, ma_length), ma_length) Wwma_Func(src, ma_length) => wwalpha = 1 / ma_length WWMA = 0.0 WWMA := wwalpha * src + (1 - wwalpha) * nz(WWMA[1]) WWMA WWMA = Wwma_Func(src, ma_length) // KAMA Calculation Kama_Func(src, ma_length) => xvnoise = math.abs(src - src[1]) nfastend = 0.666 nslowend = 0.0645 nsignal = math.abs(src - src[ma_length]) nnoise = math.sum(xvnoise, ma_length) nefratio = nnoise != 0 ? nsignal / nnoise : 0 nsmooth = math.pow(nefratio * (nfastend - nslowend) + nslowend, 2) nAMA = 0.0 nAMA := nz(nAMA[1]) + nsmooth * (src - nz(nAMA[1])) nAMA Zlema_Func(src, ma_length) => zxLag = ma_length / 2 == math.round(ma_length / 2) ? ma_length / 2 : (ma_length - 1) / 2 zxEMAData = src + src - src[zxLag] ZLEMA = ta.ema(zxEMAData, ma_length) ZLEMA ZLEMA = Zlema_Func(src, ma_length) Tsf_Func(src, ma_length) => lrc = ta.linreg(src, ma_length, 0) lrc1 = ta.linreg(src, ma_length, 1) lrs = lrc - lrc1 TSF = ta.linreg(src, ma_length, 0) + lrs TSF TSF = Tsf_Func(src, ma_length) HMA = ta.wma(2 * ta.wma(src, ma_length / 2) - ta.wma(src, ma_length), math.round(math.sqrt(ma_length))) T3e1 = ta.ema(src, ma_length) T3e2 = ta.ema(T3e1, ma_length) T3e3 = ta.ema(T3e2, ma_length) T3e4 = ta.ema(T3e3, ma_length) T3e5 = ta.ema(T3e4, ma_length) T3e6 = ta.ema(T3e5, ma_length) T3c1 = -T3a1 * T3a1 * T3a1 T3c2 = 3 * T3a1 * T3a1 + 3 * T3a1 * T3a1 * T3a1 T3c3 = -6 * T3a1 * T3a1 - 3 * T3a1 - 3 * T3a1 * T3a1 * T3a1 T3c4 = 1 + 3 * T3a1 + T3a1 * T3a1 * T3a1 + 3 * T3a1 * T3a1 T3 = T3c1 * T3e6 + T3c2 * T3e5 + T3c3 * T3e4 + T3c4 * T3e3 getMA(src, ma_length) => ma = 0.0 ma := switch mav 'SMA' => ta.sma(src, ma_length) 'EMA' => ta.ema(src, ma_length) 'WMA' => ta.wma(src, ma_length) 'DEMA' => DEMA 'TMA' => ta.sma(ta.sma(src, math.ceil(ma_length / 2)), math.floor(ma_length / 2) + 1) 'VAR' => VAR 'WWMA' => WWMA 'ZLEMA' => ZLEMA 'TSF' => TSF 'HULL' => HMA 'TILL' => T3 'KAMA' => Kama_Func(src, ma_length) ma ALL = getMA(src, ma_length) exMov = ALL fark = exMov * percent * 0.01 longStop = exMov - fark longStopPrev = nz(longStop[1], longStop) longStop := exMov > longStopPrev ? math.max(longStop, longStopPrev) : longStop shortStop = exMov + fark shortStopPrev = nz(shortStop[1], shortStop) shortStop := exMov < shortStopPrev ? math.min(shortStop, shortStopPrev) : shortStop dir = 1 dir := nz(dir[1], dir) dir := dir == -1 and exMov > shortStopPrev ? 1 : dir == 1 and exMov < longStopPrev ? -1 : dir MOST = dir == 1 ? longStop : shortStop cro = _type and _type1 ? ta.crossover(exMov, exMov[1]) : _type ? ta.crossover(close, exMov) : ta.crossover(exMov, MOST) cru = _type and _type1 ? ta.crossunder(exMov, exMov[1]) : _type ? ta.crossunder(close, exMov) : ta.crossunder(exMov, MOST) direction = 0 direction := cro ? 1 : cru ? -1 : direction[1] col1 = exMov > exMov[1] col3 = exMov < exMov[1] colorM = col1 and _type and _type1 ? color.rgb(14, 241, 52) : col3 and _type and _type1 ? color.red : color.new(#00bcd4, 0) if (cro) strategy.entry('LONG', strategy.long) if (cru) strategy.close('LONG') plot(_type ? na : MOST, color=color.new(color.maroon, 0), linewidth=3, title='MOST') plot(exMov, color=colorM, linewidth=2, title='exMov') plotshape(cro and showsignallabels, title='BUY', text='BUY', location=location.belowbar, style=shape.labelup, size=size.tiny, color=color.new(#00bcd4, 0), textcolor=color.new(color.white, 0)) plotshape(cru and showsignallabels, title='SELL', text='SELL', location=location.abovebar, style=shape.labeldown, size=size.tiny, color=color.new(#e91e63, 0), textcolor=color.new(color.white, 0))