This strategy is an adaptive trading system that combines volatility and momentum indicators to capture market trends through the coordination of multiple technical indicators. The strategy uses the ATR indicator to monitor market volatility, MACD to judge trend momentum, and combines price momentum indicators to confirm trading signals, with a flexible stop-loss and take-profit mechanism. The system has strong adaptability and can automatically adjust trading frequency and position control according to market conditions.
The strategy relies on a triple indicator system as its core trading logic: First, ATR is used to measure market volatility conditions to provide volatility reference for trading decisions; Second, MACD indicator’s golden and death crosses are used to capture trend turning points, with MACD fast and slow line crossovers used as the main trading trigger signals; Third, price momentum indicators are used for verification, observing price changes relative to previous periods to confirm trend strength. The system also incorporates a 50-day moving average as a trend filter, only allowing long positions when price is above the moving average and short positions when below. To avoid overtrading, the strategy sets minimum trading intervals and optionally enforces alternating signal execution.
This strategy is a well-designed, logically rigorous quantitative trading system that achieves effective capture of market trends through the use of multiple technical indicators. The system has made detailed considerations in risk control and trade execution, showing good practicality. Although there are some potential risks, through the suggested optimization directions, both the stability and profitability of the strategy can be expected to further improve.
/*backtest start: 2019-12-23 08:00:00 end: 2024-11-25 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("[ETH] Volatility & Momentum Adaptive Strategy", shorttitle="Definitive 1 day Ethereum Signal", overlay=true, initial_capital=10000, currency=currency.USD) // === Input Parameters === // trade_size = input.float(5, title="Trade Size (ETH)") atr_length = input.int(8, minval=1, title="ATR Length") macd_fast = input.int(8, minval=1, title="MACD Fast Length") macd_slow = input.int(7, minval=1, title="MACD Slow Length") macd_signal = input.int(9, minval=1, title="MACD Signal Length") momentum_length = input.int(37, title="Momentum Length") stop_loss_percent = input.float(9.9, title="Stop Loss Percentage (%)") take_profit_percent = input.float(9.0, title="Take Profit Percentage (%)") alternate_signal = input.bool(true, title="Alternate Buy/Sell Signals") // === Indicators === // // ATR to measure volatility atr = ta.atr(atr_length) // MACD for trend momentum [macd_line, signal_line, _] = ta.macd(close, macd_fast, macd_slow, macd_signal) macd_cross_up = ta.crossover(macd_line, signal_line) macd_cross_down = ta.crossunder(macd_line, signal_line) // Momentum momentum = ta.mom(close, momentum_length) // === Signal Control Variables === // var bool last_signal_long = na var int last_trade_bar = na min_bars_between_trades = 5 // Adjust for minimal trade frequency control time_elapsed = na(last_trade_bar) or (bar_index - last_trade_bar) >= min_bars_between_trades // === Buy and Sell Conditions === // // Buy when: buy_signal = (macd_cross_up and momentum > 0 and close > ta.sma(close, 50) and time_elapsed) // Sell when: sell_signal = (macd_cross_down and momentum < 0 and close < ta.sma(close, 50) and time_elapsed) // Enforce alternate signals if selected if alternate_signal buy_signal := buy_signal and (na(last_signal_long) or not last_signal_long) sell_signal := sell_signal and (not na(last_signal_long) and last_signal_long) // === Trade Execution === // // Buy Position if (buy_signal) if strategy.position_size < 0 strategy.close("Short") strategy.entry("Long", strategy.long, qty=trade_size) last_signal_long := true last_trade_bar := bar_index // Sell Position if (sell_signal) if strategy.position_size > 0 strategy.close("Long") strategy.entry("Short", strategy.short, qty=trade_size) last_signal_long := false last_trade_bar := bar_index // === Stop Loss and Take Profit === // if strategy.position_size > 0 long_take_profit = strategy.position_avg_price * (1 + take_profit_percent / 100) long_stop_loss = strategy.position_avg_price * (1 - stop_loss_percent / 100) strategy.exit("TP/SL Long", from_entry="Long", limit=long_take_profit, stop=long_stop_loss) if strategy.position_size < 0 short_take_profit = strategy.position_avg_price * (1 - take_profit_percent / 100) short_stop_loss = strategy.position_avg_price * (1 + stop_loss_percent / 100) strategy.exit("TP/SL Short", from_entry="Short", limit=short_take_profit, stop=short_stop_loss) // === Visual Signals === // plotshape(series=buy_signal and time_elapsed, title="Buy Signal", location=location.belowbar, color=color.green, style=shape.labelup, text="BUY") plotshape(series=sell_signal and time_elapsed, title="Sell Signal", location=location.abovebar, color=color.red, style=shape.labeldown, text="SELL")