Chande Momentum Oscillator(MO)|/100
Bollinger Bands as volatility filter: Upper Band = MA + (K * StdDev) Lower Band = MA - (K * StdDev)
Entry conditions: - Long: Price breaks above slow VIDYA with upward fast VIDYA trend and price above upper Bollinger Band - Short: Price breaks below slow VIDYA with downward fast VIDYA trend and price below lower Bollinger Band
Multi-tier profit-taking mechanism includes: 1. ATR-based take profit 2. Percentage-based take profit 3. Multiplier for short trade profit percentages
This strategy creates a comprehensive trend-following system by combining VIDYA indicator’s dynamic adaptability with Bollinger Bands’ volatility filtering. The multi-tier profit-taking mechanism and differentiated long/short handling provide strong profit potential and risk control. However, users need to monitor market environment changes, adjust parameters accordingly, and establish robust money management systems. Further strategy optimization should focus on parameter adaptation, market environment recognition, and risk control enhancement.
/*backtest start: 2019-12-23 08:00:00 end: 2024-12-10 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © PresentTrading // This strategy, "VIDYA ProTrend Multi-Tier Profit," is a trend-following system that utilizes fast and slow VIDYA indicators // to identify entry and exit points based on the direction and strength of the trend. // It incorporates Bollinger Bands as a volatility filter and features a multi-step take profit mechanism, // with adjustable ATR-based and percentage-based profit targets for both long and short positions. // The strategy allows for more aggressive take profit settings for short trades, making it adaptable to varying market conditions. //@version=5 strategy("VIDYA ProTrend Multi-Tier Profit", overlay=true, precision=3, commission_value= 0.1, commission_type=strategy.commission.percent, slippage= 1, currency=currency.USD, default_qty_type = strategy.percent_of_equity, default_qty_value = 10, initial_capital=10000) // User-defined inputs tradeDirection = input.string(title="Trading Direction", defval="Both", options=["Long", "Short", "Both"]) fastVidyaLength = input.int(10, title="Fast VIDYA Length", minval=1) slowVidyaLength = input.int(30, title="Slow VIDYA Length", minval=1) minSlopeThreshold = input.float(0.05, title="Minimum VIDYA Slope Threshold", step=0.01) // Bollinger Bands Inputs bbLength = input.int(20, title="Bollinger Bands Length", minval=1) bbMultiplier = input.float(1.0, title="Bollinger Bands Multiplier", step=0.1) // Multi-Step Take Profit Settings group_tp = "Multi-Step Take Profit" useMultiStepTP = input.bool(true, title="Enable Multi-Step Take Profit", group=group_tp) tp_direction = input.string(title="Take Profit Direction", defval="Both", options=["Long", "Short", "Both"], group=group_tp) atrLengthTP = input.int(14, title="ATR Length", group=group_tp) // ATR-based Take Profit Steps atrMultiplierTP1 = input.float(2.618, title="ATR Multiplier for TP 1", group=group_tp) atrMultiplierTP2 = input.float(5.0, title="ATR Multiplier for TP 2", group=group_tp) atrMultiplierTP3 = input.float(10.0, title="ATR Multiplier for TP 3", group=group_tp) // Short Position Multiplier for Take Profit Percentages shortTPPercentMultiplier = input.float(1.5, title="Short TP Percent Multiplier", group=group_tp) // Percentage-based Take Profit Steps (Long) tp_level_percent1 = input.float(title="Take Profit Level 1 (%)", defval=3.0, group=group_tp) tp_level_percent2 = input.float(title="Take Profit Level 2 (%)", defval=8.0, group=group_tp) tp_level_percent3 = input.float(title="Take Profit Level 3 (%)", defval=17.0, group=group_tp) // Percentage-based Take Profit Allocation (Long) tp_percent1 = input.float(title="Take Profit Percent 1 (%)", defval=12.0, group=group_tp) tp_percent2 = input.float(title="Take Profit Percent 2 (%)", defval=8.0, group=group_tp) tp_percent3 = input.float(title="Take Profit Percent 3 (%)", defval=10.0, group=group_tp) // ATR-based Take Profit Percent Allocation (Long) tp_percentATR1 = input.float(title="ATR TP Percent 1 (%)", defval=10.0, group=group_tp) tp_percentATR2 = input.float(title="ATR TP Percent 2 (%)", defval=10.0, group=group_tp) tp_percentATR3 = input.float(title="ATR TP Percent 3 (%)", defval=10.0, group=group_tp) // Short position percentage allocations using the multiplier tp_percent1_short = tp_percent1 * shortTPPercentMultiplier tp_percent2_short = tp_percent2 * shortTPPercentMultiplier tp_percent3_short = tp_percent3 * shortTPPercentMultiplier tp_percentATR1_short = tp_percentATR1 * shortTPPercentMultiplier tp_percentATR2_short = tp_percentATR2 * shortTPPercentMultiplier tp_percentATR3_short = tp_percentATR3 * shortTPPercentMultiplier // VIDYA Calculation Function calcVIDYA(src, length) => alpha = 2 / (length + 1) momm = ta.change(src) m1 = momm >= 0.0 ? momm : 0.0 m2 = momm < 0.0 ? -momm : 0.0 sm1 = math.sum(m1, length) sm2 = math.sum(m2, length) chandeMO = nz(100 * (sm1 - sm2) / (sm1 + sm2)) k = math.abs(chandeMO) / 100 var float vidya = na vidya := na(vidya[1]) ? src : (alpha * k * src + (1 - alpha * k) * vidya[1]) vidya // Calculate VIDYAs fastVIDYA = calcVIDYA(close, fastVidyaLength) slowVIDYA = calcVIDYA(close, slowVidyaLength) // Bollinger Bands Calculation [bbUpper, bbBasis, bbLower] = ta.bb(close, bbLength, bbMultiplier) // Manual Slope Calculation (price difference over time) calcSlope(current, previous, length) => (current - previous) / length // Slope of fast and slow VIDYA (comparing current value with value 'length' bars ago) fastSlope = calcSlope(fastVIDYA, fastVIDYA[fastVidyaLength], fastVidyaLength) slowSlope = calcSlope(slowVIDYA, slowVIDYA[slowVidyaLength], slowVidyaLength) // Conditions for long entry with Bollinger Bands filter longCondition = close > slowVIDYA and fastVIDYA > slowSlope and fastSlope > minSlopeThreshold and slowSlope > 1/2*minSlopeThreshold and close > bbUpper // Conditions for short entry with Bollinger Bands filter shortCondition = close < slowVIDYA and fastSlope < slowSlope and fastSlope < -minSlopeThreshold and slowSlope < -1/2*minSlopeThreshold and close < bbLower // Exit conditions (opposite crossovers or flat slopes) exitLongCondition = fastSlope < -minSlopeThreshold and slowSlope < -1/2*minSlopeThreshold or shortCondition exitShortCondition = fastSlope > minSlopeThreshold and slowSlope > 1/2*minSlopeThreshold or longCondition // Entry and Exit logic with trading direction if (longCondition) and (strategy.position_size == 0) and (tradeDirection == "Long" or tradeDirection == "Both") strategy.entry("Long", strategy.long) if (exitLongCondition) and strategy.position_size > 0 and (tradeDirection == "Long" or tradeDirection == "Both") strategy.close("Long") if (shortCondition) and (strategy.position_size == 0) and (tradeDirection == "Short" or tradeDirection == "Both") strategy.entry("Short", strategy.short) if (exitShortCondition) and strategy.position_size < 0 and (tradeDirection == "Short" or tradeDirection == "Both") strategy.close("Short") if useMultiStepTP if strategy.position_size > 0 and (tp_direction == "Long" or tp_direction == "Both") // ATR-based Take Profit (Long) tp_priceATR1_long = strategy.position_avg_price + atrMultiplierTP1 * ta.atr(atrLengthTP) tp_priceATR2_long = strategy.position_avg_price + atrMultiplierTP2 * ta.atr(atrLengthTP) tp_priceATR3_long = strategy.position_avg_price + atrMultiplierTP3 * ta.atr(atrLengthTP) // Percentage-based Take Profit (Long) tp_pricePercent1_long = strategy.position_avg_price * (1 + tp_level_percent1 / 100) tp_pricePercent2_long = strategy.position_avg_price * (1 + tp_level_percent2 / 100) tp_pricePercent3_long = strategy.position_avg_price * (1 + tp_level_percent3 / 100) // Execute ATR-based exits for Long strategy.exit("TP ATR 1 Long", from_entry="Long", qty_percent=tp_percentATR1, limit=tp_priceATR1_long) strategy.exit("TP ATR 2 Long", from_entry="Long", qty_percent=tp_percentATR2, limit=tp_priceATR2_long) strategy.exit("TP ATR 3 Long", from_entry="Long", qty_percent=tp_percentATR3, limit=tp_priceATR3_long) // Execute Percentage-based exits for Long strategy.exit("TP Percent 1 Long", from_entry="Long", qty_percent=tp_percent1, limit=tp_pricePercent1_long) strategy.exit("TP Percent 2 Long", from_entry="Long", qty_percent=tp_percent2, limit=tp_pricePercent2_long) strategy.exit("TP Percent 3 Long", from_entry="Long", qty_percent=tp_percent3, limit=tp_pricePercent3_long) if strategy.position_size < 0 and (tp_direction == "Short" or tp_direction == "Both") // ATR-based Take Profit (Short) - using the same ATR levels as long tp_priceATR1_short = strategy.position_avg_price - atrMultiplierTP1 * ta.atr(atrLengthTP) tp_priceATR2_short = strategy.position_avg_price - atrMultiplierTP2 * ta.atr(atrLengthTP) tp_priceATR3_short = strategy.position_avg_price - atrMultiplierTP3 * ta.atr(atrLengthTP) // Percentage-based Take Profit (Short) - using the same levels, but more aggressive percentages tp_pricePercent1_short = strategy.position_avg_price * (1 - tp_level_percent1 / 100) tp_pricePercent2_short = strategy.position_avg_price * (1 - tp_level_percent2 / 100) tp_pricePercent3_short = strategy.position_avg_price * (1 - tp_level_percent3 / 100) // Execute ATR-based exits for Short (using the percentage multiplier for short) strategy.exit("TP ATR 1 Short", from_entry="Short", qty_percent=tp_percentATR1_short, limit=tp_priceATR1_short) strategy.exit("TP ATR 2 Short", from_entry="Short", qty_percent=tp_percentATR2_short, limit=tp_priceATR2_short) strategy.exit("TP ATR 3 Short", from_entry="Short", qty_percent=tp_percentATR3_short, limit=tp_priceATR3_short) // Execute Percentage-based exits for Short strategy.exit("TP Percent 1 Short", from_entry="Short", qty_percent=tp_percent1_short, limit=tp_pricePercent1_short) strategy.exit("TP Percent 2 Short", from_entry="Short", qty_percent=tp_percent2_short, limit=tp_pricePercent2_short) strategy.exit("TP Percent 3 Short", from_entry="Short", qty_percent=tp_percent3_short, limit=tp_pricePercent3_short) // Plot VIDYAs plot(fastVIDYA, color=color.green, title="Fast VIDYA") plot(slowVIDYA, color=color.red, title="Slow VIDYA")