This strategy is a momentum breakout trading system based on Bollinger Bands, primarily capturing trend opportunities through the relationship between price and the upper Bollinger Band. The strategy employs an adaptive moving average type selection mechanism, combined with standard deviation channels to identify market volatility characteristics, particularly suitable for markets with high volatility.
The core logic of the strategy is based on the following key elements: 1. Uses customizable moving averages (including SMA, EMA, SMMA, WMA, VWMA) to calculate the middle band of Bollinger Bands. 2. Dynamically determines upper and lower band positions through standard deviation multiplier (default 2.0). 3. Enters long positions when price breaks above the upper band, indicating formation of strong breakout trends. 4. Exits positions when price falls below the lower band, suggesting potential end of uptrend. 5. Incorporates trading costs (0.1%) and slippage (3 points), better reflecting real trading conditions.
This is a well-designed trend following strategy with clear logic. It captures market momentum through the dynamic nature of Bollinger Bands and includes good risk control mechanisms. The strategy is highly customizable and can adapt to different market environments through parameter adjustments. For live trading implementation, it is recommended to conduct thorough parameter optimization and backtesting validation, while incorporating the suggested optimization directions for strategy improvement.
/*backtest start: 2019-12-23 08:00:00 end: 2024-12-11 08:00:00 period: 1d basePeriod: 1d exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("Demo GPT - Bollinger Bands", overlay=true, initial_capital=10000, commission_type=strategy.commission.percent, commission_value=0.1, slippage=3, default_qty_type=strategy.percent_of_equity, default_qty_value=100) // Inputs length = input.int(20, minval=1, title="Length") maType = input.string("SMA", "Basis MA Type", options = ["SMA", "EMA", "SMMA (RMA)", "WMA", "VWMA"]) src = input(close, title="Source") mult = input.float(2.0, minval=0.001, maxval=50, title="StdDev") offset = input.int(0, "Offset", minval=-500, maxval=500) // Date range inputs startYear = input.int(2018, "Start Year", minval=1970, maxval=2100) startMonth = input.int(1, "Start Month", minval=1, maxval=12) startDay = input.int(1, "Start Day", minval=1, maxval=31) endYear = input.int(2069, "End Year", minval=1970, maxval=2100) endMonth = input.int(12, "End Month", minval=1, maxval=12) endDay = input.int(31, "End Day", minval=1, maxval=31) // Time range startTime = timestamp("GMT+0", startYear, startMonth, startDay, 0, 0) endTime = timestamp("GMT+0", endYear, endMonth, endDay, 23, 59) // Moving average function ma(source, length, _type) => switch _type "SMA" => ta.sma(source, length) "EMA" => ta.ema(source, length) "SMMA (RMA)" => ta.rma(source, length) "WMA" => ta.wma(source, length) "VWMA" => ta.vwma(source, length) // Calculate Bollinger Bands basis = ma(src, length, maType) dev = mult * ta.stdev(src, length) upper = basis + dev lower = basis - dev // Plot plot(basis, "Basis", color=#2962FF, offset=offset) p1 = plot(upper, "Upper", color=#F23645, offset=offset) p2 = plot(lower, "Lower", color=#089981, offset=offset) fill(p1, p2, title="Background", color=color.rgb(33, 150, 243, 95)) // Strategy logic: Only go long and flat inDateRange = time >= startTime and time <= endTime noPosition = strategy.position_size == 0 longPosition = strategy.position_size > 0 // Buy if close is above upper band if inDateRange and noPosition and close > upper strategy.entry("Long", strategy.long) // Sell/Exit if close is below lower band if inDateRange and longPosition and close < lower strategy.close("Long")