本策略是一个基于机器学习的自适应超级趋势交易系统,通过整合波动率聚类、自适应ATR趋势检测和结构化的进出场机制,提高了传统SuperTrend指标的可靠性。策略核心在于通过机器学习方法对市场波动率进行分类,在合适的市场环境下进行趋势跟踪交易,同时运用动态的止损止盈来控制风险。
策略包含三个关键组成部分:1)基于ATR的自适应SuperTrend计算,用于确定趋势方向和转折点;2)基于K-means算法的波动率聚类,将市场状态分为高、中、低三种波动环境;3)基于波动率环境的差异化交易规则。在低波动率环境下寻找趋势性机会,在高波动率环境下保持谨慎。系统通过ta.crossunder和ta.crossover函数捕捉趋势转向信号,并结合价格与SuperTrend线的位置关系确定交易方向。
该策略通过将机器学习技术与传统技术分析方法相结合,创造了一个智能化的趋势跟踪系统。策略的核心优势在于其自适应性和风险控制能力,通过波动率聚类实现了对市场状态的智能识别。虽然存在参数敏感性等风险,但通过持续优化和完善,策略有望在各类市场环境中保持稳定的表现。建议交易者在实盘应用时充分测试参数敏感性,并结合市场具体特征进行针对性优化。
/*backtest
start: 2025-01-09 00:00:00
end: 2025-01-16 00:00:00
period: 10m
basePeriod: 10m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT","balance":49999}]
*/
//@version=5
strategy("Adaptive SuperTrend Strategy", overlay=true, default_qty_type=strategy.percent_of_equity, default_qty_value=200)
// Import Indicator Components
atr_len = input.int(10, "ATR Length", group="SuperTrend Settings")
fact = input.float(3, "SuperTrend Factor", group="SuperTrend Settings")
training_data_period = input.int(100, "Training Data Length", group="K-Means Settings")
// Volatility Clustering
volatility = ta.atr(atr_len)
upper = ta.highest(volatility, training_data_period)
lower = ta.lowest(volatility, training_data_period)
high_volatility = lower + (upper-lower) * 0.75
medium_volatility = lower + (upper-lower) * 0.5
low_volatility = lower + (upper-lower) * 0.25
cluster = volatility >= high_volatility ? 0 : volatility >= medium_volatility ? 1 : 2
// SuperTrend Calculation
pine_supertrend(factor, atr) =>
src = hl2
upperBand = src + factor * atr
lowerBand = src - factor * atr
prevLowerBand = nz(lowerBand[1])
prevUpperBand = nz(upperBand[1])
lowerBand := lowerBand > prevLowerBand or close[1] < prevLowerBand ? lowerBand : prevLowerBand
upperBand := upperBand < prevUpperBand or close[1] > prevUpperBand ? upperBand : prevUpperBand
int _direction = na
float superTrend = na
prevSuperTrend = superTrend[1]
if na(atr[1])
_direction := 1
else if prevSuperTrend == prevUpperBand
_direction := close > upperBand ? -1 : 1
else
_direction := close < lowerBand ? 1 : -1
superTrend := _direction == -1 ? lowerBand : upperBand
[superTrend, _direction]
[ST, dir] = pine_supertrend(fact, volatility)
// Entry Conditions
longEntry = ta.crossunder(dir, 0) and cluster > 1 and close > ST
shortEntry = ta.crossover(dir, 0) and cluster == 0 and close < ST
// Stop Loss & Take Profit
atr_mult = input.float(2, "ATR Multiplier for SL/TP", group="Risk Management")
sl = atr_mult * ta.atr(atr_len)
longStopLoss = close - sl
longTakeProfit = close + (sl * 1.5)
shortStopLoss = close + sl
shortTakeProfit = close - (sl * 1.5)
// Execute Trades
if longEntry
strategy.entry("Long", strategy.long)
strategy.exit("Take Profit", from_entry="Long", limit=longTakeProfit, stop=longStopLoss)
if shortEntry
strategy.entry("Short", strategy.short)
strategy.exit("Take Profit", from_entry="Short", limit=shortTakeProfit, stop=shortStopLoss)
// Plot SuperTrend
plot(ST, title="SuperTrend", color=dir > 0 ? color.green : color.red, linewidth=2)
// Alerts
alertcondition(longEntry, title="Long Entry Signal", message="Buy Signal - Trend Shift Up")
alertcondition(shortEntry, title="Short Entry Signal", message="Sell Signal - Trend Shift Down")