0000000000164f2434262e1cc", “transactionHash”: “0x6aa8d80daf42f442591e7530e31323d05e1d6dd9f9f9b9c102e157d89810c048”, “address”: “0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2”, “blockHash”: “0xcd3d567c9bd02a4549b1de0dc638ab5523e847c3c156b096424f56c633000fd9” }, { “address”: “0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2”, “blockHash”: “0xcd3d567c9bd02a4549b1de0dc638ab5523e847c3c156b096424f56c633000fd9”, “blockNumber”: “0x109b1cd”, “logIndex”: “0xde”, “removed”: false, “topics”: [“0x7fcf532c15f0a6db0bd6d0e038bea71d30d808c7d98cb3bf7268a95bf5081b65”, “0x000000000000000000000000ef1c6e67703c7bd7107eed8303fbe6ec2554bf6b”], “data”: “0x0000000000000000000000000000000000000000000000000164f2434262e1cc”, “transactionHash”: “0x6aa8d80daf42f442591e7530e31323d05e1d6dd9f9f9b9c102e157d89810c048”, “transactionIndex”: “0x91” }]
We can see that there are various events in the logs data, if we only care about ```Transfer``` events, we need to filter out the ```Transfer``` events in these data.
### Retrieving Logs
The Ethereum log is divided into two parts: 1. ```topics```; 2. ```data```.
- ```topics```
Taking the results of the code run for the ```eth_getLogs``` section test as an example, the data in the ```topics``` field is:
```desc
"topics": ["0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef", "0x00000000000000000000000012b791bb27b3a4ee958b5a435fea7d49ec076e9c", "0x000000000000000000000000ef1c6e67703c7bd7107eed8303fbe6ec2554bf6b"],
The value of the topics
field is an array structure used to describe the event. It is specified that its (array) length cannot exceed 4 and the first element is the signature hash of the event.
In the FMZ Quant Trading Platform, we can calculate this signature hash using the Encode
function, using the following code:
function main() {
var eventFunction = "Transfer(address,address,uint256)"
var eventHash = Encode("keccak256", "string", "hex", eventFunction)
Log("eventHash:", "0x" + eventHash)
// eventHash: 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef
}
Calculate the keccak256
hash value (hex encoding) of Transfer(address,address,uint256)
is 0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef
.
The value of the topics
field is an array structure, with the second element, and the third element, respectively:
Sending address from
Receiving address to
data
The data in the data
field are:
"data": "0x0000000000000000000000000000000000000000000000000164f2434262e1cc",
Certain parameters in the event (parameters without indexed declarations in the Solidity code of the smart contract) are stored in the data
section.
Parse the data 0x0000000000000000000000000000000000000000000000000164f2434262e1cc
function toAmount(s, decimals) {
return Number((BigDecimal(BigInt(s)) / BigDecimal(Math.pow(10, decimals))).toString())
}
function main() {
var value = "0x0000000000000000000000000000000000000000000000000164f2434262e1cc"
Log(toAmount(value, 0) / 1e18) // 0.10047146239950075
}
This data is obtained as 0.10047146239950075 and the data
is the corresponding transfer amount.
The above was explained, practiced and ready to go. We can start retrieving the logs at:
function toAmount(s, decimals) {
return Number((BigDecimal(BigInt(s)) / BigDecimal(Math.pow(10, decimals))).toString())
}
function toInnerAmount(n, decimals) {
return (BigDecimal(n) * BigDecimal(Math.pow(10, decimals))).toFixed(0)
}
function main() {
// getBlockNumber
var blockNumber = exchange.IO("api", "eth", "eth_blockNumber")
Log("blockNumber:", blockNumber)
// get logs
var fromBlock = "0x" + (toAmount(blockNumber, 0) - 1).toString(16)
var toBlock = "0x" + toAmount(blockNumber, 0).toString(16)
var params = {
"fromBlock" : fromBlock,
"toBlock" : toBlock,
"address" : "0xC02aaA39b223FE8D0A0e5C4F27eAD9083C756Cc2"
}
var logs = exchange.IO("api", "eth", "eth_getLogs", params)
// Traverse logs
var eventFunction = "Transfer(address,address,uint256)"
var eventHash = "0x" + Encode("keccak256", "string", "hex", eventFunction)
Log("eventHash:", eventHash)
var counter = 0
for (var i = logs.length - 1; i >= 0 && counter < 10; i--) {
if (logs[i].topics[0] == eventHash) {
Log("Event Transfer, data:", toAmount(logs[i].data, 0) / 1e18, ", blockNumber:", toAmount(logs[i].blockNumber, 0), ", transactionHash:", logs[i].transactionHash,
", log:", logs[i])
counter++
}
}
}
Check on https://etherscan.io/
:
Results of the test code run in FMZ debugging tool:
Data in the from
, to
fields can also be parsed depending on the needs at the time of retrieving, e.g:
function main() {
var from = "0x00000000000000000000000012b791bb27b3a4ee958b5a435fea7d49ec076e9c"
var address = "0x" + exchange.IO("encodePacked", "address", from)
Log("address:", address)
}
Running results:
address: 0x12b791bb27b3a4ee958b5a435fea7d49ec076e9c
Since the debugging tool can only test the code for a short time and output the content only after the code execution is completed, it cannot display and output the log in real time. In this section, we use the FMZ Quant Trading Platform to create live trading to test.
Here we use the Ethereum mainnet, and we listen to the Transfer(address,address,uint256)
event of the USDT
cryptocurrency contract. Based on what we learned in the last lesson, we designed and wrote an example of continuously listening to the events of a certain smart contract:
function toAmount(s, decimals) {
return Number((BigDecimal(BigInt(s)) / BigDecimal(Math.pow(10, decimals))).toString())
}
function toInnerAmount(n, decimals) {
return (BigDecimal(n) * BigDecimal(Math.pow(10, decimals))).toFixed(0)
}
function addEventListener(contractAddress, event, callBack) {
var self = {}
self.eventHash = "0x" + Encode("keccak256", "string", "hex", event)
self.contractAddress = contractAddress
self.latestBlockNumber = 0
self.fromBlockNumber = 0
self.firstBlockNumber = 0
/* TODO: test
self.isFirst = true
*/
self.getBlockNumber = function() {
var maxTry = 10
for (var i = 0; i < maxTry; i++) {
var ret = exchange.IO("api", "eth", "eth_blockNumber")
if (ret) {
return toAmount(ret, 0)
}
Sleep(5000)
}
throw "getBlockNumber failed"
}
self.run = function() {
var currBlockNumber = self.getBlockNumber()
var fromBlock = "0x" + self.fromBlockNumber.toString(16)
var toBlock = "0x" + currBlockNumber.toString(16)
var params = {
"fromBlock" : fromBlock,
"toBlock" : toBlock,
"address" : self.contractAddress,
"topics" : [self.eventHash]
}
// Log("fromBlockNumber:", self.fromBlockNumber, ", currBlockNumber:", currBlockNumber, "#FF0000")
var logs = exchange.IO("api", "eth", "eth_getLogs", params)
if (!logs) {
return
}
for (var i = 0; i < logs.length; i++) {
if (toAmount(logs[i].blockNumber, 0) > self.latestBlockNumber) {
/* TODO: test
if (self.isFirst) {
self.firstBlockNumber = toAmount(logs[i].blockNumber, 0)
Log("firstBlockNumber:", self.firstBlockNumber)
self.isFirst = false
}
*/
callBack(logs[i])
}
}
self.latestBlockNumber = currBlockNumber
self.fromBlockNumber = self.latestBlockNumber - 1
}
self.latestBlockNumber = self.getBlockNumber()
self.fromBlockNumber = self.latestBlockNumber - 1
return self
}
var listener = null
function main() {
var event = "Transfer(address,address,uint256)"
var contractAddress = "0xdac17f958d2ee523a2206206994597c13d831ec7"
var decimals = exchange.IO("api", contractAddress, "decimals")
Log(exchange.IO("api", contractAddress, "name"), " decimals:", decimals)
listener = addEventListener(contractAddress, event, function(log) {
var fromAddress = "0x" + exchange.IO("encodePacked", "address", log.topics[1])
var toAddress = "0x" + exchange.IO("encodePacked", "address", log.topics[2])
Log("Transfer:", fromAddress, "->", toAddress, ", value:", toAmount(log.data, decimals), ", blockNumber:", toAmount(log.blockNumber, 0))
/* TODO: test
arrLog.push(log)
*/
})
while (true) {
listener.run()
Sleep(5000)
}
}
/* TODO: test
var arrLog = []
function onexit() {
Log("End the run and verify the record")
var firstBlockNumber = listener.firstBlockNumber
var endBlockNumber = listener.latestBlockNumber
Log("getLogs, from:", firstBlockNumber, " -> to:", endBlockNumber)
var fromBlock = "0x" + (firstBlockNumber).toString(16)
var toBlock = "0x" + (endBlockNumber).toString(16)
var params = {
"fromBlock" : fromBlock,
"toBlock" : toBlock,
"topics" : ["0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef"],
"address" : "0xdac17f958d2ee523a2206206994597c13d831ec7"
}
var logs = exchange.IO("api", "eth", "eth_getLogs", params)
Log("arrLog:", arrLog.length)
Log("logs:", logs.length)
if (arrLog.length != logs.length) {
Log("Length varies!")
return
}
for (var i = 0; i < arrLog.length; i++) {
Log("Determine the blockNumber:", logs[i].blockNumber == arrLog[i].blockNumber, ", Determine from:", logs[i].topics[1] == arrLog[i].topics[1],
"Determine to:", logs[i].topics[2] == arrLog[i].topics[2])
}
}
*/
Running on live trading:
For the execution results, a validation section (TODO: test) is also written in the code. After a simple validation it can be seen that the Transfer
event of the USDT contract is continuously monitored and data is recorded, and a comparison between this data and the event data obtained at once can be observed that the data is consistent with:
Based on the previous lesson Listening to contract events
, we expand on it by adding filters to the listening process to listen for transfers to and from specified addresses. When a smart contract creates a log (i.e. releases an event), the log data topics
contains up to 4 pieces of information. So we design a filter rule with [[A1, A2, ...An], null, [C1], D]
as an example.
[A1, A2, ...An]
corresponds to the data at position topics[0]
.Null
corresponds to the data at position topics[1]
.[C1]
corresponds to data at position topics[2]
.D
corresponds to the data at position topics[3]
.null
means it is not filtered, e.g. null
corresponds to topics[1]
and any value matches.[C1]
corresponds to topics[2]
or D
corresponds to topics[3]
, and unmatched logs are filtered.[A1, A2, ...An]
corresponds to topics[0]
, [A1, A2, ...An]
with any one of them matching topics[0]
, then the logs will not be filtered.Listening to USDT transfers from exchanges
Monitoring of USDT
transactions transferred from and to the Binance Exchange:
function toAmount(s, decimals) {
return Number((BigDecimal(BigInt(s)) / BigDecimal(Math.pow(10, decimals))).toString())
}
function toInnerAmount(n, decimals) {
return (BigDecimal(n) * BigDecimal(Math.pow(10, decimals))).toFixed(0)
}
function addEventListener(contractAddress, event, callBack) {
var self = {}
self.eventHash = "0x" + Encode("keccak256", "string", "hex", event)
self.contractAddress = contractAddress
self.latestBlockNumber = 0
self.fromBlockNumber = 0
self.firstBlockNumber = 0
self.filters = []
self.setFilter = function(filterCondition) {
if (filterCondition.length > 4) {
throw "filterCondition error"
}
self.filters.push(filterCondition)
Log("Set filter conditions:", filterCondition)
}
self.getTokenBalanceOfWallet = function(walletAddress, tokenAddress, tokenDecimals) {
var balance = exchange.IO("api", tokenAddress, "balanceOf", walletAddress)
if (balance) {
return toAmount(balance, tokenDecimals)
}
return null
}
self.getBlockNumber = function() {
var maxTry = 10
for (var i = 0; i < maxTry; i++) {
var ret = exchange.IO("api", "eth", "eth_blockNumber")
if (ret) {
return toAmount(ret, 0)
}
Sleep(5000)
}
throw "getBlockNumber failed"
}
self.run = function() {
var currBlockNumber = self.getBlockNumber()
var fromBlock = "0x" + self.fromBlockNumber.toString(16)
var toBlock = "0x" + currBlockNumber.toString(16)
var params = {
"fromBlock" : fromBlock,
"toBlock" : toBlock,
"address" : self.contractAddress,
"topics" : [self.eventHash]
}
var logs = exchange.IO("api", "eth", "eth_getLogs", params)
if (!logs) {
return
}
for (var i = 0; i < logs.length; i++) {
if (toAmount(logs[i].blockNumber, 0) > self.latestBlockNumber) {
// Check the filter condition, and execute the judgment if the filter condition is set
if (self.filters.length != 0) {
// Initial filter marker
var isFilter = true
// Traverse filter condition setting
for (var j = 0; j < self.filters.length; j++) {
// Take a filter setting, e.g: [[A1, A2, ...An], null, [C1], D]
var cond = self.filters[j]
// Traverse the filter setting
var final = true
for (var topicsIndex = 0; topicsIndex < cond.length; topicsIndex++) {
// Take one of the conditions in the filter setting, if it is the first condition: i.e. the data to be compared with topics[0]
var condValue = cond[topicsIndex]
// Data in the logs
if (topicsIndex > logs[i].topics.length - 1) {
continue
}
var topicsEleValue = logs[i].topics[topicsIndex]
// If it's a Transfer event, you need to handle the from and to
if (logs[i].topics[0] == "0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef") {
if (topicsIndex == 1 || topicsIndex == 2) {
topicsEleValue = "0x" + exchange.IO("encodePacked", "address", topicsEleValue)
}
}
// If the condValue type is an array, it means that there are multiple comparison conditions in this position, and the multiple condition comparison is a logical or relationship
if (Array.isArray(condValue) && condValue.length > 1) {
// Determine condValue[0] == topicsEleValue || condValue[1] == topicsEleValue
final = final && condValue.some(element => element === topicsEleValue)
}else if (condValue === null) {
final = final && true
} else {
final = final && (condValue === topicsEleValue)
}
}
if (final) {
isFilter = false
}
}
if (isFilter) {
continue
}
}
callBack(logs[i])
}
}
self.latestBlockNumber = currBlockNumber
self.fromBlockNumber = self.latestBlockNumber - 1
}
self.latestBlockNumber = self.getBlockNumber()
self.fromBlockNumber = self.latestBlockNumber - 1
return self
}
var listener = null
function main() {
// Initial clean-up log
LogReset(1)
LogProfitReset()
var event = "Transfer(address,address,uint256)" // Listening to events
var contractAddress = "0xdac17f958d2ee523a2206206994597c13d831ec7" // USDT contract address
var decimals = exchange.IO("api", contractAddress, "decimals") // Get the precision information of USDT token
var accountBinanceAddress = "0x28C6c06298d514Db089934071355E5743bf21d60" // Binance hot wallet address
accountBinanceAddress = accountBinanceAddress.toLowerCase() // Addresses are handled in lowercase
Log(exchange.IO("api", contractAddress, "name"), " decimals:", decimals)
// Creating a listener object
listener = addEventListener(contractAddress, event, function(log) {
var fromAddress = "0x" + exchange.IO("encodePacked", "address", log.topics[1])
var toAddress = "0x" + exchange.IO("encodePacked", "address", log.topics[2])
if (fromAddress == accountBinanceAddress) {
Log("Binance transfer out - ", " Transfer:", fromAddress, "->", toAddress, ", value:", toAmount(log.data, decimals), ", blockNumber:", toAmount(log.blockNumber, 0), "#CD32CD")
} else if (toAddress == accountBinanceAddress) {
Log("Binance transfer in - ", " Transfer:", fromAddress, "->", toAddress, ", value:", toAmount(log.data, decimals), ", blockNumber:", toAmount(log.blockNumber, 0), "#FF0000")
}
})
// Set up event filtering
listener.setFilter([null, accountBinanceAddress, null]) // Binance -> USDT
listener.setFilter([null, null, accountBinanceAddress]) // USDT -> Binance
var preBalance = 0
while (true) {
listener.run()
var balance = listener.getTokenBalanceOfWallet(accountBinanceAddress, contractAddress, decimals)
if (balance) {
var direction = ""
if (preBalance != 0 && preBalance > balance) {
direction = " ↓ " + (preBalance - balance) + "#CD32CD"
} else if (preBalance != 0 && preBalance < balance) {
direction = " ↑ " + (balance - preBalance) + "#FF0000"
}
Log("Binance wallet address:", accountBinanceAddress, " balance:", balance, direction)
LogProfit(balance, "&") // Drawing only, no log printing
preBalance = balance
}
LogStatus(_D(), "Binance wallet address:", accountBinanceAddress, ", balance:", balance)
Sleep(5000 * 3)
}
}
The above code running in live trading:
In this lesson, we introduced how to design an event filter. And used it to listen for USDT
transactions associated with the Binance Exchange hot wallet. You can modify and extend this sample program to listen to any event you are interested in, to see what new transactions smart money
has made, what new items the NFT
Tycoons have rushed, etc.
Many of the calculations related to Ethereum have values that exceed the maximum safe integer of the JavaScript
language. Therefore, some methods are needed on the FMZ Quant Trading Platform to handle large values, which we have used specifically in previous courses and have not covered in detail. This section will discuss this aspect in detail.
Print the maximum safe integer defined in the JavaScript
language:
function main() {
Log("Number.MAX_SAFE_INTEGER:", Number.MAX_SAFE_INTEGER)
}
Running results:
Number.MAX_SAFE_INTEGER: 9007199254740991
The smallest unit defined in Ethereum is 1wei
, and the definition 1Gwei
is equal to 1000000000 wei
. 1Gwei
is not really a very large number in Ethereum-related calculations, and some data is much larger than it. So these data with very large values can easily exceed Number.MAX_SAFE_INTEGER: 9007199254740991
.
At FMZ Quant Trading Platform, we use the platform’s BigInt
object to represent these very large integer data. Use the constructor BigInt()
to construct the BigInt
object. You can construct BigInt
objects using numeric, hexadecimal numeric strings as parameters. Use the toString()
method of BigInt
object to output the data represented by the object as a string.
The operations supported by the BigInt
object are:
+
-
*
/
%
*
Refer to the following code examples:
function main() {
// Decimal representation of 1Gwei
var oneGwei = 1000000000
// Decimal to hexadecimal conversion of 1Gwei
var oneGweiForHex = "0x" + oneGwei.toString(16)
Log("oneGwei : ", oneGwei)
Log("oneGweiForHex : ", oneGweiForHex)
// Constructing BigInt objects
Log("1Gwei / 1Gwei : ", (BigInt(oneGwei) / BigInt(oneGweiForHex)).toString(10))
Log("1Gwei * 1Gwei : ", (BigInt(oneGwei) * BigInt(oneGweiForHex)).toString(10))
Log("1Gwei - 1Gwei : ", (BigInt(oneGwei) - BigInt(oneGweiForHex)).toString(10))
Log("1Gwei + 1Gwei : ", (BigInt(oneGwei) + BigInt(oneGweiForHex)).toString(10))
Log("(1Gwei + 1) % 1Gwei : ", (BigInt(oneGwei + 1) % BigInt(oneGweiForHex)).toString(10))
Log("1Gwei ** 2 : ", (BigInt(oneGwei) ** BigInt(2)).toString(10))
Log("The square root of 100 : ", (BigInt(100) ** BigFloat(0.5)).toString(10))
Log("Number.MAX_SAFE_INTEGER : ", BigInt(Number.MAX_SAFE_INTEGER).toString(10))
Log("Number.MAX_SAFE_INTEGER * 2 : ", (BigInt(Number.MAX_SAFE_INTEGER) * BigInt("2")).toString(10))
}
Debugging tool testing:
2023-06-08 11:39:50 Info Number.MAX_SAFE_INTEGER * 2 : 18014398509481982
2023-06-08 11:39:50 Info Number.MAX_SAFE_INTEGER : 9007199254740991
2023-06-08 11:39:50 Info The square root of 100 : 10
2023-06-08 11:39:50 Info 1Gwei ** 2 : 1000000000000000000
2023-06-08 11:39:50 Info (1Gwei + 1) % 1Gwei : 1
2023-06-08 11:39:50 Info 1Gwei + 1Gwei : 2000000000
2023-06-08 11:39:50 Info 1Gwei - 1Gwei : 0
2023-06-08 11:39:50 Info 1Gwei * 1Gwei : 1000000000000000000
2023-06-08 11:39:50 Info 1Gwei / 1Gwei : 1
2023-06-08 11:39:50 Info oneGweiForHex : 0x3b9aca00
2023-06-08 11:39:50 Info oneGwei : 1000000000
The BigFloat
object is used similarly to the BigInt
object to represent floating point numbers with larger values, and it also supports addition, subtraction, multiplication and division.
The BigFloat
object supports the toFixed()
method.
Refer to the following code example:
function main() {
var pi = 3.14
var oneGwei = "1000000000"
var oneGweiForHex = "0x3b9aca00"
Log("pi + oneGwei : ", (BigFloat(pi) + BigFloat(oneGwei)).toFixed(2))
Log("pi - oneGweiForHex : ", (BigFloat(pi) - BigFloat(oneGweiForHex)).toFixed(2))
Log("pi * 2.0 : ", (BigFloat(pi) * BigFloat(2.0)).toFixed(2))
Log("pi / 2.0 : ", (BigFloat(pi) / BigFloat(2.0)).toFixed(2))
}
Debugging tool testing:
2023-06-08 13:56:44 Info pi / 2.0 : 1.57
2023-06-08 13:56:44 Info pi * 2.0 : 6.28
2023-06-08 13:56:44 Info pi - oneGweiForHex : -999999996.86
2023-06-08 13:56:44 Info pi + oneGwei : 1000000003.14
The BigDecimal
object is compatible with integer values and floating point values, and supports initialization with the BigInt
object and the BigFloat
object, and it also supports addition, subtraction, multiplication and division.
Refer to the following code example:
function main() {
var pi = 3.1415
var oneGwei = 1000000000
var oneGweiForHex = "0x3b9aca00"
Log("pi : ", BigDecimal(pi).toFixed(2))
Log("oneGwei : ", BigDecimal(oneGwei).toString())
Log("oneGweiForHex : ", BigDecimal(BigInt(oneGweiForHex)).toString())
Log("BigInt(oneGwei) : ", BigDecimal(BigInt(oneGwei)).toString())
Log("BigFloat(pi) : ", BigDecimal(BigFloat(pi)).toFixed(4))
Log("oneGwei + pi : ", (BigDecimal(oneGwei) + BigDecimal(pi)).toString())
Log("oneGwei - pi : ", (BigDecimal(oneGwei) - BigDecimal(pi)).toString())
Log("2.0 * pi : ", (BigDecimal(2.0) * BigDecimal(pi)).toString())
Log("pi / pi : ", (BigDecimal(pi) / BigDecimal(pi)).toString())
}
Running in the debugging tool:
2023-06-08 14:52:53 Info pi / pi : 1
2023-06-08 14:52:53 Info 2.0 * pi : 6.283
2023-06-08 14:52:53 Info oneGwei - pi : 999999996.8585
2023-06-08 14:52:53 Info oneGwei + pi : 1000000003.1415
2023-06-08 14:52:53 Info BigFloat(pi) : 3.1415
2023-06-08 14:52:53 Info BigInt(oneGwei) : 1e+9
2023-06-08 14:52:53 Info oneGweiForHex : 1e+9
2023-06-08 14:52:53 Info oneGwei : 1e+9
2023-06-08 14:52:53 Info pi : 3.14
The following two functions: toAmount()
, toInnerAmount()
we have used many times in previous courses, these two functions are mainly used for data precision conversion.
function toAmount(s, decimals) {
return Number((BigDecimal(BigInt(s)) / BigDecimal(Math.pow(10, decimals))).toString())
}
function toInnerAmount(n, decimals) {
return (BigDecimal(n) * BigDecimal(Math.pow(10, decimals))).toFixed(0)
}
The toAmount()
function converts (reduces) a variable s
according to the precision parameter decimals
. In web3 practical development, it is often necessary to deal with some chained hexadecimal data.
We have often encountered this in our previous courses, for example, the data
field data in the Transfer(address,address,uint256)
event of a smart contract:
{
"data": "0x00000000000000000000000000000000000000000000000001c1a55000000000",
"topics": ["0xddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef", "0x0000000000000000000000006b75d8af000000e20b7a7ddf000ba900b4009a80", "0x000000000000000000000000bcb095c1f9c3dc02e834976706c87dee5d0f1fb6"],
"transactionHash": "0x27f9bf5abe3148169b4b85a83e1de32bd50eb81ecc52e5af006157d93353e4c4",
"transactionIndex": "0x0",
"removed": false,
"address": "0xc02aaa39b223fe8d0a0e5c4f27ead9083c756cc2",
"blockHash": "0x847be24a7b159c292bda030a011dfec89487b70e71eed486969b032d6ef04bad",
"blockNumber": "0x109b1cc",
"logIndex": "0x0"
}
When processing data "data": "0x00000000000000000000000000000000000000000000000001c1a55000000000"
, we use the toAmount()
function. This processing is designed to do a good job of converting data field data to readable values.
function toAmount(s, decimals) {
return Number((BigDecimal(BigInt(s)) / BigDecimal(Math.pow(10, decimals))).toString())
}
function main() {
var data = "0x00000000000000000000000000000000000000000000000001c1a55000000000"
Log(toAmount(data, 18)) // Print out 0.12656402755905127
}
1 ETH token, as we know, is 1e18 wei
, if we get a data 126564027559051260
in wei
, how to convert it to ETH tokens?
Using the toAmount(, 18)
function is a very simple conversion method. The toInnerAmount()
function is the reverse operation of the toAmount()
function (depending on the precision, zoom in), and it is easy to convert the data using these two functions.
It is important to note the integer value safety range in the JavaScript language, Number.MAX_SAFE_INTEGER
, and the following example illustrates a hidden problem when converting data:
function toAmount(s, decimals) {
return Number((BigDecimal(BigInt(s)) / BigDecimal(Math.pow(10, decimals))).toString())
}
function toInnerAmount(n, decimals) {
return (BigDecimal(n) * BigDecimal(Math.pow(10, decimals))).toFixed(0)
}
function main() {
var amount = 0.01
var innerAmount = Number(toInnerAmount(amount, 18))
Log("Number.MAX_SAFE_INTEGER:", Number.MAX_SAFE_INTEGER) // 9007199254740991
Log("innerAmount:", innerAmount) // 10000000000000000
Log("typeof(innerAmount):", typeof(innerAmount), ", innerAmount:", innerAmount)
// Decimal value 10000000000000000 -> Hexadecimal value 0x2386f26fc10000
Log("Convert", innerAmount, "to hexadecimal:", innerAmount.toString(16))
Log("Convert", BigInt(10000000000000000).toString(10), "to hexadecimal:", BigInt(10000000000000000).toString(16))
Log("0x" + BigInt(10000000000000000).toString(16), "Convert to decimal:", toAmount("0x" + BigInt(10000000000000000).toString(16), 0))
}
It is possible to run in the debugging tool:
2023-06-15 16:21:40 Info Convert 0x2386f26fc10000 to decimal: 10000000000000000
2023-06-15 16:21:40 Info Convert 10000000000000000 to hexadecimal: 2386f26fc10000
2023-06-15 16:21:40 Info Convert 10000000000000000 to hexadecimal: 10000000000000000
2023-06-15 16:21:40 Info typeof(innerAmount): number , innerAmount: 10000000000000000
2023-06-15 16:21:40 Info innerAmount: 10000000000000000
2023-06-15 16:21:40 Info Number.MAX_SAFE_INTEGER: 9007199254740991
Through observation we found that:
Log("Convert", innerAmount, "to hexadecimal:", innerAmount.toString(16))
This line of code corresponds to the log output: Converting 10000000000000000 to hex: 10000000000000000
, which is not converted correctly. The reason is naturally that 10000000000000000 is beyond Number.MAX_SAFE_INTEGER
.
But when the decimal value is within the safe range, i.e., less than Number.MAX_SAFE_INTEGER
, the toString(16)
function converts it properly again, for example:
function main() {
var value = 1000
Log("Convert value to hexadecimal:", "0x" + value.toString(16)) // 0x3e8
Log("Convert 0x3e8 to decimal:", Number("0x3e8")) // 1000
}
In blockchain, even 0.01
ETH converted to a value of 10000000000000000
in wei
will exceed Number.MAX_SAFE_INTEGER``, so a safer conversion for such cases is:
BigInt(10000000000000000).toString(16)```.
Executing transactions and calling the Write
method of smart contracts on Ethereum costs a certain amount of gas and sometimes it fails. It is important to know which transactions are likely to fail before sending them and calling them. There are simulated calls on Ethereum for testing.
Ethereum’s RPC method eth_call
: it can simulate a transaction and return the result of a possible transaction, but it does not actually execute the transaction on the blockchain.
The eth_call
method has 2 parameters, the first one is a dictionary structure, transactionObject
:
// transactionObject
{
"from" : ..., // The address from which the transaction is sent
"to" : ..., // The address to which the transaction is addressed
"gas" : ..., // The integer of gas provided for the transaction execution
"gasPrice" : ..., // The integer of gasPrice used for each paid gas encoded as hexadecimal
"value" : ..., // The integer of value sent with this transaction encoded as hexadecimal
"data" : ..., // The hash of the method signature and encoded parameters. For more information, see the Contract ABI description in the Solidity documentation
}
The second parameter is blockNumber
: you can pass the label latest/pending/earliest
, etc:
/* blockNumber
The block number in hexadecimal format or the string latest, earliest, pending, safe or
finalized (safe and finalized tags are only supported on Ethereum, Gnosis, Arbitrum,
Arbitrum Nova and Avalanche C-chain), see the default block parameter description in
the official Ethereum documentation
*/
Next, we take the smart contract method approve
and transfer
calls of the token DAI
as an example for simulation calls, and the following test environment is the main Ethereum network.
We are all familiar with the approve
method for ERC20 contracts, and we have practiced it in previous courses. Since the ERC20 contract is already built into the FMZ platform ABI, there is no need to register the ABI of the smart contract to be called by the simulation.
function main() {
var contractAddressUniswapV3SwapRouterV2 = "0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45"
var contractAddress_DAI = "0x6b175474e89094c44da98b954eedeac495271d0f"
var wallet = exchange.IO("address")
// encode approve
var data = exchange.IO("encode", contractAddress_DAI, "approve(address,uint256)",
contractAddressUniswapV3SwapRouterV2, "0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff")
Log("ERC20 token DAI approve encode, data:", data)
var transactionObject = {
"from" : wallet,
"to" : contractAddress_DAI,
// "gasPrice" : "0x" + parseInt("21270894680").toString(16),
// "gas" : "0x" + parseInt("21000").toString(16),
"data" : "0x" + data,
}
var blockNumber = "latest"
var ret = exchange.IO("api", "eth", "eth_call", transactionObject, blockNumber)
Log("ret:", ret)
}
The code in the example first encodes the approve(address,uint256)
method and parameters, and the parameter value 0xffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
of the approve
method indicates the maximum number of authorizations. Authorization is given to the smart contract at address 0x68b3465833fb72A70ecDF485E0e4C7bD8665Fc45
i.e. the router contract for Uniswap V3
. Finally the Ethereum RPC method eth_call
is called for simulation. You can see that the gasPrice
and gas
fields in the transactionObject
parameters can be omitted.
The debugging tool is run and the simulation calls the approve method to authorize successfully (it does not authorize actually):
2023-06-09 11:58:39 Info ret: 0x0000000000000000000000000000000000000000000000000000000000000001
2023-06-09 11:58:39 Info ERC20 token DAI approve encode, data: 095ea7b300000000000000000000000068b3465833fb72a70ecdf485e0e4c7bd8665fc45ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff
It is also possible to simulate some failure scenarios, when we adjust the gasPrice
and gas
parameters, if the ETH in the wallet is not enough to pay the gas fee, an error will be reported::
insufficient funds
When the gas cost is set too low, an error will be reported:
intrinsic gas too low: have 21000, want 21944 (supplied gas 21000)
We are familiar with ERC20’s transfer
method, which allows you to transfer ERC20 tokens to a certain wallet address, so let’s try to simulate a transfer of 1000 DAI to Vitalik Buterin.
function toInnerAmount(n, decimals) {
return (BigDecimal(n) * BigDecimal(Math.pow(10, decimals))).toFixed(0)
}
function main() {
var walletVitalik = "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045"
var contractAddress_DAI = "0x6b175474e89094c44da98b954eedeac495271d0f"
var wallet = exchange.IO("address")
// transfer to Vitalik Buterin
var decimals_DAI = exchange.IO("api", contractAddress_DAI, "decimals")
var transferAmount = toInnerAmount(1000, decimals_DAI)
Log("Transfer amount:", 1000, "DAI, use toInnerAmount convert to:", transferAmount)
// encode transfer
var data = exchange.IO("encode", contractAddress_DAI, "transfer(address,uint256)",
walletVitalik, transferAmount)
var transactionObject = {
"from" : wallet,
"to" : contractAddress_DAI,
"data" : "0x" + data,
}
var blockNumber = "latest"
var ret = exchange.IO("api", "eth", "eth_call", transactionObject, blockNumber)
return ret
}
Since I don’t have DAI tokens in this test wallet, running it in the debug tool reported the following error unexpectedly:
execution reverted: Dai/insufficient-balance
Check the wallet address of Vitalik Buterin: 0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045
, it is clear that this wallet has DAI tokens. So let’s adjust the transfer direction of the simulation call and simulate the transfer of 1000 DAI from Vitalik Buterin to us.
Modify the code, where the changes I made comments:
function toInnerAmount(n, decimals) {
return (BigDecimal(n) * BigDecimal(Math.pow(10, decimals))).toFixed(0)
}
function main() {
var walletVitalik = "0xd8dA6BF26964aF9D7eEd9e03E53415D37aA96045"
var contractAddress_DAI = "0x6b175474e89094c44da98b954eedeac495271d0f"
var wallet = exchange.IO("address")
var decimals_DAI = exchange.IO("api", contractAddress_DAI, "decimals")
var transferAmount = toInnerAmount(1000, decimals_DAI)
Log("Transfer amount:", 1000, "DAI, use toInnerAmount convert to:", transferAmount)
// encode transfer
var data = exchange.IO("encode", contractAddress_DAI, "transfer(address,uint256)",
wallet, transferAmount) // Use the wallet variable as a parameter and change the transfer recipient's address to my own
var transactionObject = {
"from" : walletVitalik, // Use the walletVitalik variable as the value of the from field to simulate that the call was made from the Vitalik Buterin's wallet address
"to" : contractAddress_DAI,
"data" : "0x" + data,
}
var blockNumber = "latest"
var ret = exchange.IO("api", "eth", "eth_call", transactionObject, blockNumber)
Log(ret)
}
Debugging tool test:
2023-06-09 13:34:31 Info 0x0000000000000000000000000000000000000000000000000000000000000001
2023-06-09 13:34:31 Info Transfer amount: 1000 DAI, use toInnerAmount convert to: 1000000000000000000000
Using the FMZ Quant Trading Platform, it is easy to simulate the results of transactions and avoid unnecessary loss of gas fees from sending potentially failed transactions. We used the example code from this chapter of the course to simulate the call to transfer money to Vitalik Buterin’s wallet and Vitalik Buterin’s wallet to transfer money to us. Of course, there are many more uses for this eth_call
method. Use your imagination, what would you use the eth_call
method for?
We know that tokens like ETH and BTC are homogenized tokens, and the token in your wallet is not different from the token in my wallet. But there are many things in the world that are not homogeneous, such as real estate, antiques, virtual artwork, etc. These cannot be represented by homogeneous tokens in abstraction. Therefore, there is the ERC721 standard to abstract non-homogeneous objects, and there is NFT and related concepts. So among the many smart contracts deployed on Ethereum, how do we identify which smart contracts are ERC721 standard smart contracts?
To identify ERC721, it is important to know the ERC165 standard first.
With the ERC165 standard, a smart contract can declare the interfaces it supports for other contracts to check. An ERC165 interface contract has only one function: supportsInterface(bytes4 interfaceId)
, the parameter interfaceId
is the interface Id to be queried. If the contract implements the interfaceId returns a boolean true value, otherwise it returns a false value.
Here we are going to talk about how this interfaceId
is calculated and encoded specifically.
ERC165 Standard shows an example:
pragma solidity ^0.4.20;
interface Solidity101 {
function hello() external pure;
function world(int) external pure;
}
contract Selector {
function calculateSelector() public pure returns (bytes4) {
Solidity101 i;
return i.hello.selector ^ i.world.selector;
}
}
For the function signature of the interface (consisting of a function name and a list of parameter types) to perform a dissimilarity operation, for an ERC165 interface contract where the contract has only one function:
pragma solidity ^0.4.20;
interface ERC165 {
/// @notice Query if a contract implements an interface
/// @param interfaceID The interface identifier, as specified in ERC-165
/// @dev Interface identification is specified in ERC-165. This function
/// uses less than 30,000 gas.
/// @return `true` if the contract implements `interfaceID` and
/// `interfaceID` is not 0xffffffff, `false` otherwise
function supportsInterface(bytes4 interfaceID) external view returns (bool);
}
The interface identifier for this interface is 0x01ffc9a7. You can calculate this by running bytes4(keccak256(‘supportsInterface(bytes4)’)); or using the Selector contract above.
Calculate the function signature directly and take its first 4 bytes to arrive at interfaceId
.
function main() {
var ret = Encode("keccak256", "string", "hex", "supportsInterface(bytes4)")
Log("supportsInterface(bytes4) interfaceId:", "0x" + ret.slice(0, 8))
}
Tests can be run in the debug tool at:
2023-06-13 14:53:35 Info supportsInterface(bytes4) interfaceId: 0x01ffc9a7
It can be seen that the calculated results are consistent with the description in the ERC165 Standard document.
Next let’s look at the interface definition of the ERC721 contract standard:
interface ERC721 /* is ERC165 */ {
event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);
event Approval(address indexed _owner, address indexed _approved, uint256 indexed _tokenId);
event ApprovalForAll(address indexed _owner, address indexed _operator, bool _approved);
function balanceOf(address _owner) external view returns (uint256);
function ownerOf(uint256 _tokenId) external view returns (address);
function safeTransferFrom(address _from, address _to, uint256 _tokenId, bytes data) external payable;
function safeTransferFrom(address _from, address _to, uint256 _tokenId) external payable;
function transferFrom(address _from, address _to, uint256 _tokenId) external payable;
function approve(address _approved, uint256 _tokenId) external payable;
function setApprovalForAll(address _operator, bool _approved) external;
function getApproved(uint256 _tokenId) external view returns (address);
function isApprovedForAll(address _owner, address _operator) external view returns (bool);
}
If we want to determine whether a smart contract is an ERC721 contract, first we need to know the interfaceId
of the ERC721 contract before we can try to use the supportsInterface(bytes4 interfaceId)
method to determine it. In previous courses, we have familiarized us with some concepts of the ERC165 standard and the algorithm for calculating the interfaceId
, and we write code to calculate directly:
function calcSelector(arrSelector) {
var ret = null
if (Array.isArray(arrSelector)) {
if (arrSelector.length == 1) {
ret = Encode("keccak256", "string", "hex", arrSelector[0])
} else if (arrSelector.length == 0) {
throw "Error: the number of elements in the array is 0"
} else {
var viewEncodeData = null
for (var i = 0; i < arrSelector.length; i++) {
if (i == 0) {
ret = new Uint8Array(Encode("keccak256", "string", "raw", arrSelector[i]))
} else {
viewData = new Uint8Array(Encode("keccak256", "string", "raw", arrSelector[i]))
if (viewData.length != ret.length) {
throw "Error: TypeArray view length is different"
}
for (var index = 0; index < ret.length; index++) {
ret[index] ^= viewData[index]
}
}
}
ret = Encode("raw", "raw", "hex", ret.buffer)
}
} else {
throw "Error: The parameter requires an array type."
}
return "0x" + ret.slice(0, 8)
}
function main() {
// supportsInterface(bytes4): 0x01ffc9a7
// var ret = calcSelector(["supportsInterface(bytes4)"])
// ERC721Metadata: 0x5b5e139f
/*
var arrSelector = [
"name()",
"symbol()",
"tokenURI(uint256)"
]
var ret = calcSelector(arrSelector)
*/
// ERC721: 0x80ac58cd
// /*
var arrSelector = [
"balanceOf(address)",
"ownerOf(uint256)",
"safeTransferFrom(address,address,uint256,bytes)",
"safeTransferFrom(address,address,uint256)",
"transferFrom(address,address,uint256)",
"approve(address,uint256)",
"setApprovalForAll(address,bool)",
"getApproved(uint256)",
"isApprovedForAll(address,address)",
]
var ret = calcSelector(arrSelector)
// */
Log(ret)
}
The code uses the Encode()
function for function signature calculation (the keccak256
algorithm), and for the calculation in the code example above, specifying the output parameter of the Encode()
function as "raw"
, the function returns the ArrayBuffer
type of JavaScript
language.
To perform a ^
(iso-or) operation on two ArrayBuffer
objects, you need to create a TypedArray
view based on the ArrayBuffer
object, then iterate through the data in it and perform the iso-or operation one by one.
Run in the debugging tool:
2023-06-13 15:04:09 Info 0x80ac58cd
It can be seen that the calculated results are consistent with those described in eip-721.
pragma solidity ^0.4.20;
/// @title ERC-721 Non-Fungible Token Standard/// @dev See https://eips.ethereum.org/EIPS/eip-721/// Note: the ERC-165 identifier for this interface is 0x80ac58cd.interface ERC721 /* is ERC165 */ {
/// @dev This emits when ownership of any NFT changes by any mechanism.
/// This event emits when NFTs are created (`from` == 0) and destroyed
/// (`to` == 0). Exception: during contract creation, any number of NFTs
/// may be created and assigned without emitting Transfer. At the time of
/// any transfer, the approved address for that NFT (if any) is reset to none.
event Transfer(address indexed _from, address indexed _to, uint256 indexed _tokenId);
...
With the ERC721 interface Id, we can determine if a contract is an ERC721 standard contract or not. We use BAYC
to do the test, which is a contract that follows ERC721. First we need to register the ABI, and since we only call the following three methods, we can register these three methods:
The specific codes are as follows:
function main() {
// Contract address for ERC721, BAYC is used here
var testContractAddress = "0xbc4ca0eda7647a8ab7c2061c2e118a18a936f13d"
var testABI = `[{
"inputs": [{
"internalType": "bytes4",
"name": "interfaceId",
"type": "bytes4"
}],
"name": "supportsInterface",
"outputs": [{
"internalType": "bool",
"name": "",
"type": "bool"
}],
"stateMutability": "view",
"type": "function"
}, {
"inputs": [],
"name": "symbol",
"outputs": [{
"internalType": "string",
"name": "",
"type": "string"
}],
"stateMutability": "view",
"type": "function"
}, {
"inputs": [],
"name": "name",
"outputs": [{
"internalType": "string",
"name": "",
"type": "string"
}],
"stateMutability": "view",
"type": "function"
}]`
// ERC721 Interface Id, calculated in the previous course
var interfaceId = "0x80ac58cd"
// Register ABI
exchange.IO("abi", testContractAddress, testABI)
// Call the supportsInterface method
var isErc721 = exchange.IO("api", testContractAddress, "supportsInterface", interfaceId)
// Output Information
Log("Contract address:", testContractAddress)
Log("Contract name:", exchange.IO("api", testContractAddress, "name"))
Log("Contract code:", exchange.IO("api", testContractAddress, "symbol"))
Log("Whether the contract is ERC721 standard:", isErc721)
}
Tests can be run in the debugging tool:
2023-06-13 16:32:57 Info Whether the contract is ERC721 standard: true
2023-06-13 16:32:57 Info Contract code: BAYC
2023-06-13 16:32:57 Info