Die Ressourcen sind geladen. Beförderung...

Zehn Wahrheiten über maschinelles Lernen, die Sie wissen müssen

Schriftsteller:Die Erfinder quantifizieren - Kleine Träume, Erstellt: 2017-09-20 09:14:41, aktualisiert:

Zehn Wahrheiten über maschinelles Lernen, die Sie wissen müssen

Als jemand, der oft Maschinelles Lernen an Nicht-Fachleute erklärt, habe ich die folgenden zehn Punkte zusammengestellt, um ein paar Beispiele für Maschinelles Lernen zu erläutern.

  • 1. Maschinelles Lernen bedeutet, aus Daten zu lernen; KI ist ein Trendwort.

    Maschinelles Lernen ist nicht wie die schwarze Propaganda: Du kannst unzählige Probleme lösen, indem du den richtigen Lernalgorithmen die richtigen Trainingsdaten gibst. Nennen Sie es AI, wenn es hilft, Ihr AI-System zu verkaufen.

  • 2. Das Maschinelle Lernen beschäftigt sich hauptsächlich mit Daten und Algorithmen, aber vor allem mit Daten.

    Es gibt viele spannende Bereiche für die Entwicklung von Algorithmen für maschinelles Lernen, insbesondere für Deep Learning. Aber Daten sind ein wichtiger Faktor, der maschinelles Lernen ermöglicht.

  • 3. Es sei denn, Sie haben eine große Menge an Daten, sollten Sie sich an ein einfaches Modell halten.

    Maschinelles Lernen trainiert Modelle nach Mustern in Daten und erkundet den Raum für mögliche Modelle, die durch Parameter definiert sind. Wenn der Parameterraum zu groß ist, wird es zu stark auf die Trainingsdaten abgestimmt und trainiert ein Modell, das sich nicht generalisieren kann. Wenn Sie dies in Detail erklären möchten, müssen Sie mehr mathematische Berechnungen durchführen, und Sie sollten dies als eine Regel anwenden, um Ihr Modell so einfach wie möglich zu machen.

  • 4. Die Qualität von maschinellem Lernen ist stark mit der Qualität der Daten verbunden, die für das Training verwendet werden.

    Das Sprichwort sagt, wenn man einen Haufen Müll in den Computer einträgt, ist der Ausgang auch ein Haufen Mülldaten. Obwohl dieser Begriff vor dem Maschinellen Lernen existiert, ist dies genau die zentrale Einschränkung von Maschinellem Lernen.

  • 5. Machine Learning funktioniert nur, wenn die Trainingsdaten repräsentativ sind.

    oi Wie die Fund-Introduktionsbeschreibung warnt, ist die Vergangenheit keine Garantie für zukünftige Ergebnisse. Auch maschinelles Lernen sollte eine ähnliche Warnbemerkung abgeben: Es kann nur auf Daten basieren, die in der gleichen Verteilung wie die Trainingsdaten verteilt sind. Daher sollte man auf die Abweichungen zwischen den Trainingsdaten und den Produktionsdaten achten und das Trainingsmodell regelmäßig wiederholen, um zu gewährleisten, dass es nicht veraltet wird.

  • 6. Die meisten Aufgaben von Machine Learning sind die Datenumwandlung.

    Unter der Propaganda der Maschinellen Lerntechnik-Spidalen mag man denken, dass Maschinelles Lernen hauptsächlich die Auswahl und Anpassung von Algorithmen erledigt. Aber die Realität ist unerwartet: Die meiste Zeit und Energie wird in der Reinigung und Charakterisierung der Daten verbracht, also in der Umwandlung der ursprünglichen Eigenschaften in Eigenschaften, die die Datensignale besser repräsentieren.

  • 7. Tief lernen ist ein revolutionärer Fortschritt, aber kein Wundermittel.

    Da sich maschinelles Lernen in vielen Bereichen verbreitet und entwickelt hat, wird es auch von vielen verbreitet. Darüber hinaus fördert es die Automatisierung von Arbeiten, die traditionell durch Feature-Engineering durchgeführt wurden, insbesondere für Bild- und Videodaten.

  • 8. Maschinelle Lernsysteme sind leicht von Fehlern der Bediener beeinflusst.

    Entschuldigung an die NRA: Die Maschinellen Lernalgorithmen töten nicht, sondern die Menschen. Wenn ein maschinelles Lernsystem ausfällt, ist es selten, weil ein Problem mit dem Maschinellen Lernalgorithmus vorliegt. Es ist eher möglich, dass ein menschlicher Fehler in die Trainingsdaten eingeführt wurde, was zu Abweichungen oder anderen Systemfehlern führt.

  • 9. Machine Learning kann unabsichtlich eine Selbstverwirklichung voraussagen.

    In vielen Anwendungen von maschinellem Lernen beeinflussen Entscheidungen, die Sie heute treffen, die Trainingsdaten, die Sie morgen sammeln. Sobald ein maschinelles Lernsystem die Abweichungen in sein Modell integriert hat, kann es weiterhin neue Trainingsdaten erzeugen, die mit Abweichungen verstärkt werden.

  • 10. KI wird sich nicht selbst erwecken, rebellieren und die Menschheit zerstören.

    Es scheint, dass viele Menschen die Idee der künstlichen Intelligenz aus Science-Fiction-Filmen erhalten haben. Wir sollten uns von Science-Fiction inspirieren, aber wir können nicht so dumm sein, die Novelle für die Realität zu halten. Von bewussten bösen Menschen bis hin zu unbewussten abweichenden Maschinellen Lernmodellen gibt es zu viele Realitäten und Gefahren, um die man sich sorgen muss.

    Es geht um weit mehr als die zehn Punkte, die ich oben beschrieben habe. Ich hoffe, dass diese Einführungsartikel für Nicht-Fachleute nützlich sind.

Übersetzt von Global AI Big Data Plateau


Mehr