Die Ressourcen sind geladen. Beförderung...

Umkehrhandelsstrategie auf der Grundlage des stochastischen RSI

Schriftsteller:ChaoZhang, Datum: 2023-09-13 18:00:13
Tags:

Diese Strategie wird Reversal Trading Strategy Based on Stochastic RSI genannt. Sie verwendet den Stochastic RSI-Indikator, um Überkauf/Überverkaufssituationen zu identifizieren und bei Umkehrung der Extreme umgekehrte Trades einzugehen.

Der Stochastische RSI berechnet den Stochastischen Oszillator anhand von RSI-Werten und erzeugt K- und D-Liniensignale, die Überkauf-/Überverkaufszustände im RSI selbst widerspiegeln.

Die Handelslogik lautet:

  1. Berechnen Sie den schnellen RSI, um Überkauf/Überverkauf zu erfassen.

  2. Der Stochastische RSI-K-Liniensignal wird mit einem gewichteten gleitenden Durchschnitt auf dem RSI ermittelt.

  3. Wenn die K-Linie über ihren gleitenden Durchschnitt geht, wird ein Kaufsignal erzeugt.

  4. Umkehrsignale in der Nähe von Überkauf- oder Überverkaufsextremen deuten auf Umkehrhandelschancen hin.

Der Vorteil dieser Strategie besteht darin, den stochastischen RSI zu verwenden, um Umkehrpunkte zu identifizieren.

Der Stochastische RSI ist eine häufige und nützliche Methode, um den Zeitpunkt der Umkehrung zu bestimmen.


/*backtest
start: 2023-09-05 00:00:00
end: 2023-09-12 00:00:00
period: 5m
basePeriod: 1m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © MightyZinger
//@version=4
strategy(shorttitle="MZ SRSI",title="MightyZinger SRSI Strategy", overlay=false, pyramiding=1, calc_on_order_fills=true, calc_on_every_tick=true, default_qty_type=strategy.fixed, default_qty_value=5,commission_value=0.1)

//heiking ashi calculation
UseHAcandles    = input(true, title="Use Heikin Ashi Candles in Algo Calculations")
////
// === /INPUTS ===

// === BASE FUNCTIONS ===
haClose = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, close) : close
haOpen  = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, open) : open
haHigh  = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, high) : high
haLow   = UseHAcandles ? security(heikinashi(syminfo.tickerid), timeframe.period, low) : low


//Backtest dates
fromMonth = input(defval = 1,    title = "From Month",      type = input.integer, minval = 1, maxval = 12)
fromDay   = input(defval = 1,    title = "From Day",        type = input.integer, minval = 1, maxval = 31)
fromYear  = input(defval = 2021, title = "From Year",       type = input.integer, minval = 1970)
thruMonth = input(defval = 12,    title = "Thru Month",      type = input.integer, minval = 1, maxval = 12)
thruDay   = input(defval = 30,    title = "Thru Day",        type = input.integer, minval = 1, maxval = 31)
thruYear  = input(defval = 2021, title = "Thru Year",       type = input.integer, minval = 1970)

showDate  = input(defval = true, title = "Show Date Range", type = input.bool)

start     = timestamp(fromYear, fromMonth, fromDay, 00, 00)        // backtest start window
finish    = timestamp(thruYear, thruMonth, thruDay, 23, 59)        // backtest finish window
window()  => true       // create function "within window of time"

src = UseHAcandles ? haClose : input(close, title="Source")

TopBand = input(80, step=0.01)
LowBand = input(20, step=0.01)
lengthRSI = input(2, minval=1,title="RSI Length")
lengthMA = input(50, minval=1,title="MA Length")
lengthRSI_MA= input(5, minval=1,title="RSI MA Length")


//RSI Source
maType = input(title="MA Type", type=input.string, defval="LRC", options=["SMA","EMA","DEMA","TEMA","LRC","WMA","MF","VAMA","TMA","HMA", "JMA", "Kijun v2", "EDSMA","McGinley"])
rsiMaType = input(title="RSI MA Type", type=input.string, defval="TMA", options=["SMA","EMA","DEMA","TEMA","LRC","WMA","MF","VAMA","TMA","HMA", "JMA", "Kijun v2", "EDSMA","McGinley"])

//MA Function

//           Pre-reqs
//
tema(src, len) =>
    ema1 = ema(src, len)
    ema2 = ema(ema1, len)
    ema3 = ema(ema2, len)
    (3 * ema1) - (3 * ema2) + ema3
kidiv = input(defval=1,maxval=4,  title="Kijun MOD Divider")

jurik_phase = input(title="* Jurik (JMA) Only - Phase", type=input.integer, defval=3)
jurik_power = input(title="* Jurik (JMA) Only - Power", type=input.integer, defval=1)
volatility_lookback = input(10, title="* Volatility Adjusted (VAMA) Only - Volatility lookback length")
//                  MF
beta = input(0.8,minval=0,maxval=1,step=0.1,  title="Modular Filter, General Filter Only - Beta")
feedback = input(false, title="Modular Filter Only - Feedback")
z = input(0.5,title="Modular Filter Only - Feedback Weighting",step=0.1, minval=0, maxval=1)
//EDSMA
ssfLength = input(title="EDSMA - Super Smoother Filter Length", type=input.integer, minval=1, defval=20)
ssfPoles = input(title="EDSMA - Super Smoother Filter Poles", type=input.integer, defval=2, options=[2, 3])

//----
//                  EDSMA
get2PoleSSF(src, length) =>
    PI = 2 * asin(1)
    arg = sqrt(2) * PI / length
    a1 = exp(-arg)
    b1 = 2 * a1 * cos(arg)
    c2 = b1
    c3 = -pow(a1, 2)
    c1 = 1 - c2 - c3
    
    ssf = 0.0
    ssf := c1 * src + c2 * nz(ssf[1]) + c3 * nz(ssf[2])

get3PoleSSF(src, length) =>
    PI = 2 * asin(1)

    arg = PI / length
    a1 = exp(-arg)
    b1 = 2 * a1 * cos(1.738 * arg)
    c1 = pow(a1, 2)

    coef2 = b1 + c1
    coef3 = -(c1 + b1 * c1)
    coef4 = pow(c1, 2)
    coef1 = 1 - coef2 - coef3 - coef4

    ssf = 0.0
    ssf := coef1 * src + coef2 * nz(ssf[1]) + coef3 * nz(ssf[2]) + coef4 * nz(ssf[3])

//          MA Main function
ma(type, src, len) =>
    float result = 0
    if type=="TMA"
        result := sma(sma(src, ceil(len / 2)), floor(len / 2) + 1)
    if type=="MF"
        ts=0.,b=0.,c=0.,os=0.
        //----
        alpha = 2/(len+1)
        a = feedback ? z*src + (1-z)*nz(ts[1],src) : src
        //----
        b := a > alpha*a+(1-alpha)*nz(b[1],a) ? a : alpha*a+(1-alpha)*nz(b[1],a)
        c := a < alpha*a+(1-alpha)*nz(c[1],a) ? a : alpha*a+(1-alpha)*nz(c[1],a)
        os := a == b ? 1 : a == c ? 0 : os[1]
        //----
        upper = beta*b+(1-beta)*c
        lower = beta*c+(1-beta)*b 
        ts := os*upper+(1-os)*lower
        result := ts
    if type=="LRC"
        result := linreg(src, len, 0)
    if type=="SMA" // Simple
        result := sma(src, len)
    if type=="EMA" // Exponential
        result := ema(src, len)
    if type=="DEMA" // Double Exponential
        e = ema(src, len)
        result := 2 * e - ema(e, len)
    if type=="TEMA" // Triple Exponential
        e = ema(src, len)
        result := 3 * (e - ema(e, len)) + ema(ema(e, len), len)
    if type=="WMA" // Weighted
        result := wma(src, len)
    if type=="VAMA" // Volatility Adjusted
        /// Copyright © 2019 to present, Joris Duyck (JD)
        mid=ema(src,len)
        dev=src-mid
        vol_up=highest(dev,volatility_lookback)
        vol_down=lowest(dev,volatility_lookback)
        result := mid+avg(vol_up,vol_down)
    if type=="HMA" // Hull
        result := wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len)))
    if type=="JMA" // Jurik
        /// Copyright © 2018 Alex Orekhov (everget)
        /// Copyright © 2017 Jurik Research and Consulting.
        phaseRatio = jurik_phase < -100 ? 0.5 : jurik_phase > 100 ? 2.5 : jurik_phase / 100 + 1.5
        beta = 0.45 * (len - 1) / (0.45 * (len - 1) + 2)
        alpha = pow(beta, jurik_power)
        jma = 0.0
        e0 = 0.0
        e0 := (1 - alpha) * src + alpha * nz(e0[1])
        e1 = 0.0
        e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
        e2 = 0.0
        e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1])
        jma := e2 + nz(jma[1])
        result := jma
    if type=="Kijun v2"
        kijun = avg(lowest(len), highest(len))//, (open + close)/2)
        conversionLine = avg(lowest(len/kidiv), highest(len/kidiv))
        delta = (kijun + conversionLine)/2
        result :=delta
    if type=="McGinley"
        mg = 0.0
        mg := na(mg[1]) ? ema(src, len) : mg[1] + (src - mg[1]) / (len * pow(src/mg[1], 4))
        result :=mg
    if type=="EDSMA"
    
        zeros = src - nz(src[2])
        avgZeros = (zeros + zeros[1]) / 2
        
        // Ehlers Super Smoother Filter 
        ssf = ssfPoles == 2
             ? get2PoleSSF(avgZeros, ssfLength)
             : get3PoleSSF(avgZeros, ssfLength)
        
        // Rescale filter in terms of Standard Deviations
        stdev = stdev(ssf, len)
        scaledFilter = stdev != 0
             ? ssf / stdev
             : 0
        
        alpha = 5 * abs(scaledFilter) / len
        
        edsma = 0.0
        edsma := alpha * src + (1 - alpha) * nz(edsma[1])
        result :=  edsma
    result


//Indicator
hline(TopBand, color=color.red,linestyle=hline.style_dotted, linewidth=2)
hline(LowBand, color=color.green, linestyle=hline.style_dashed, linewidth=2)

// RSI Definition
rsiSource = ma(maType, src , lengthMA)
frsi = rsi(rsiSource, lengthRSI)
fsma = ma(rsiMaType, frsi , lengthRSI_MA)

plot(frsi,title='frsi', color= color.lime, linewidth=3)
fsmaColor=color.new(color.red, 80)
plot(fsma,title='fsma', color= fsmaColor , linewidth=3, style=plot.style_area)

//Background
bgcolor(frsi > fsma ? color.lime : color.orange, 80)

longcondition = crossover (frsi , fsma)
shortcondition = crossunder(frsi , fsma)


////////////////////////////////
//if (longcondition)
//    strategy.entry("BUY", strategy.long, when = window())
    
//if (shortcondition)
//    strategy.close("SELL", strategy.short, when = window())

strategy.entry(id="long", long = true, when = longcondition and window())
strategy.close("long", when = shortcondition and window())

Mehr