This strategy takes full advantage of moving averages and relative strength index to identify and follow trends. It only needs two indicators to determine the trend and find proper entry/exit timing. The strategy aims to capture medium-to-long term price trends while avoiding short-term market noise.
The strategy uses three EMAs with different periods, with EMA-A having the shortest period, EMA-B medium, and EMA-C the longest. When the shorter EMA-A crosses above the longer EMA-B, it signals an upward trend, thus going long. Conversely, when EMA-A crosses below EMA-B, it signals a downward trend, thus going short. To filter false signals, it also uses the longest EMA-C - only considering entry after the price breaks EMA-C.
The strategy also uses RSI to locate exit points. When long, it closes the position if RSI crosses above 70. When short, it exits if RSI falls below 30. This locks in trend profits and prevents losses from expanding further.
These risks can be reduced by optimizing RSI parameters, adding filters, and combining with trend analysis.
This strategy combines trend following and oscillator indicators for trend identification and capturing. With simple parameter and logic optimization, it can be greatly improved while keeping simplicity. It is a very practical trend following template suitable for medium-to-long term investors.
/*backtest start: 2023-08-26 00:00:00 end: 2023-09-25 00:00:00 period: 2h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ //@author Alorse //@version=5 // strategy(title='Tendency EMA + RSI [Alorse]', shorttitle='Tendece EMA + RSI [Alorse]', overlay=true, pyramiding=0, currency=currency.USD, default_qty_type=strategy.percent_of_equity, initial_capital=1000, default_qty_value=20, commission_type=strategy.commission.percent, commission_value=0.01) // Bollinger Bands len = input.int(14, minval=1, title='Length', group='RSI') src = input.source(close, 'Source', group='RSI') rsi = ta.rsi(src, len) // Moving Averages len_a = input.int(10, minval=1, title='EMA A Length', group='Moving Averages') out_a = ta.ema(close, len_a) plot(out_a, title='EMA A', color=color.purple) len_b = input.int(20, minval=1, title='EMA B Length', group='Moving Averages') out_b = ta.ema(close, len_b) plot(out_b, title='EMA B', color=color.orange) len_c = input.int(100, minval=1, title='EMA C Length', group='Moving Averages') out_c = ta.ema(close, len_c) plot(out_c, title='EMA B', color=color.green) // Strategy Conditions stratGroup = 'Strategy' showLong = input.bool(true, title='Long entries', group=stratGroup) showShort = input.bool(false, title='Short entries', group=stratGroup) closeAfterXBars = input.bool(true, title='Close after X # bars', tooltip='If trade is in profit', group=stratGroup) xBars = input.int(24, title='# bars') entryLong = ta.crossover(out_a, out_b) and out_a > out_c and close > open exitLong = rsi > 70 entryShort = ta.crossunder(out_a, out_b) and out_a < out_c and close < open exitShort = rsi < 30 bought = strategy.opentrades[0] == 1 and strategy.position_size[0] > strategy.position_size[1] entry_price = ta.valuewhen(bought, open, 0) var int nPastBars = 0 if strategy.position_size > 0 nPastBars := nPastBars + 1 nPastBars if strategy.position_size == 0 nPastBars := 0 nPastBars if closeAfterXBars exitLong := nPastBars >= xBars and close > entry_price ? true : exitLong exitLong exitShort := nPastBars >= xBars and close < entry_price ? true : exitShort exitShort // Long Entry strategy.entry('Long', strategy.long, when=entryLong and showLong) strategy.close('Long', when=exitLong) // Short Entry strategy.entry('Short', strategy.short, when=entryShort and showShort) strategy.close('Short', when=exitShort)