The resource loading... loading...

Multi-indicator Combination Strategy

Author: ChaoZhang, Date: 2023-10-07 15:34:33
Tags:

Overview

This strategy combines multiple technical indicators to judge the price trend and generate buy and sell signals.

Strategy Principle

The strategy mainly uses the following indicators to determine the price trend:

  1. SuperTrend: Buy when price breaks above the upper band, sell when breaks below the lower band.

  2. SMA: Buy when price crosses above SMA, sell when crosses below SMA.

  3. Momentum: Go long when momentum is positive, go short when negative.

  4. MACD: Buy when DIFF crosses above DEA, sell when crosses below.

  5. Bull and Bear: Go long when bull power > bear power, vice versa.

  6. RSI: Buy when RSI crosses above 30, sell when crosses below 70.

  7. Candlesticks: Go long after N bullish bars, go short after N bearish bars.

  8. CCI: Buy when CCI > 100, sell when CCI < -100.

  9. DMI: Go long when DMI+ > DMI-, else go short.

  10. Market Waves: Go long in upward waves, go short in downward waves.

  11. Stochastics: Buy when %K crosses above 20, sell when crosses below 80.

The indicator signals are quantified as 1 or -1 depending on up or down direction. The total points are summed up. Buy when total points cross above 0, sell when cross below 0.

Advantage Analysis

The biggest advantage of this multi-indicator strategy is higher reliability by combining signals from various indicators to filter out false signals. It is more robust than single indicator strategies.

Another advantage is the flexibility to customize indicators and parameters for different market conditions. The indicator weights can also be adjusted based on backtest results.

Risk Analysis

Some risks to note in such combo strategies:

  1. High correlation between indicators may generate duplicated signals. Indicators should be selected to have low correlation.

  2. Too many indicators leads to delayed signals. There is a tradeoff between indicator quantity and timeliness.

  3. Inappropriate indicator parameters impact strategy performance. Optimal parameters need to be found through thorough backtesting.

  4. Indicator efficiency varies across market regimes. Rolling backtests should check indicator validity.

Optimization Directions

This strategy can be improved in several ways:

  1. Optimize indicator selection and number to find best combination.

  2. Optimize parameters for each indicator.

  3. Adjust indicator weights to emphasize key indicators.

  4. Add filters like volume spike to avoid false breakouts.

  5. Use machine learning models to automatically find optimal combinations.

Conclusion

In summary, this multi-indicator strategy combines the strengths of various indicators to improve signal reliability and reduce false signals. Fine-tuning the indicator selection, parameters, and weights can further enhance the stability. It suits traders who require stable indicator signals.


/*backtest
start: 2023-01-01 00:00:00
end: 2023-10-06 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
strategy("Super indicator ", overlay=true, precision=2, initial_capital=10000, default_qty_type=strategy.percent_of_equity, default_qty_value=100, commission_type=strategy.commission.percent, commission_value=0.075)

/////////////// Time Frame ///////////////
_0 = input(false,  "════════ Test Period ═══════")
testStartYear = input(2017, "Backtest Start Year") 
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay, 0, 0)

testStopYear = input(2019, "Backtest Stop Year")
testStopMonth = input(12, "Backtest Stop Month")
testStopDay = input(31, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay, 0, 0)

testPeriod() =>true


hilow = ((high - low)*100)
openclose = ((close - open)*100)
vol1 = (volume / hilow)
spreadvol = (openclose * vol1)
VPT = spreadvol + cum(spreadvol)
window_len = 28

v_len = 14
price_spread = stdev(high-low, window_len)

vp =  spreadvol + cum(spreadvol)
smooth = sma(vp, v_len)
v_spread = stdev(vp - smooth, window_len)
shadow = (vp - smooth) / v_spread * price_spread

out1 = shadow > 0 ? high + shadow : low + shadow

//plot(out, style=line,linewidth=3, color=color)
len=5
vpt=ema(out1,len)


// INPUTS //
st_mult   =3
st_period = 7

// CALCULATIONS //
up_lev = vpt - (st_mult * atr(st_period))
dn_lev = vpt + (st_mult * atr(st_period))

up_trend   = 0.0
up_trend   := close[1] > up_trend[1]   ? max(up_lev, up_trend[1])   : up_lev

down_trend = 0.0
down_trend := close[1] < down_trend[1] ? min(dn_lev, down_trend[1]) : dn_lev

// Calculate trend var
trend10 = 0
trend10 := close > down_trend[1] ? 1: close < up_trend[1] ? -1 : nz(trend10[1], 1)

// Calculate SuperTrend Line
st_line = trend10 ==1 ? up_trend : down_trend

//
src = input(close, title="Source")
//sma
sma20 = sma(src, 20)
smapoint = 0
smapoint := src > sma20 ? smapoint + 1 : smapoint - 1


//AO
ao = sma(hl2,5) - sma(hl2,34)
aopoint = ao > 0 ? 1 : ao < 0 ? -1 : 0
//momentum
mom = src - src[14]
mompoint = mom > 0 ? 1 : mom < 0 ? -1 : 0
//MACD
fast_ma = ema(src, 12)
slow_ma = ema(src, 26)
macd = fast_ma - slow_ma
signal = ema(macd, 9)
hist = macd - signal
histpoint = hist > hist[1] ? 3 : -3

//Bull bear
Length = 30
r1=iff(close[1]<open,max(open-close[1],high-low),high-low)
r2=iff(close[1]>open,max(close[1]-open,high-low),high-low)
bull=iff(close==open,iff(high-close==close-low,iff(close[1]>open,max(high-open,close-low),r1),iff(high-close>close-low,iff(close[1]<open, max(high-close[1],close-low), high-open),r1)),iff(close<open,iff(close[1]<open,max(high-close[1],close-low), max(high-open,close-low)),r1))
bear=iff(close==open,iff(high-close==close-low,iff(close[1]<open,max(open-low,high-close),r2),iff(high-close>close-low,r2,iff(close[1]>open,max(close[1]-low,high-close), open-low))),iff(close<open,r2,iff(close[1]>open,max(close[1]-low,high-close),max(open-low,high-close))))
colors=iff(sma(bull-bear,Length)>0, color.green, color.red)
// barcolor(colors)
bbpoint = sma(bull-bear,Length)>0 ? 1 : -1
//UO
length7 = 7,
length14 = 14,
length28 = 28
average(bp, tr_, length) => sum(bp, length) / sum(tr_, length)
high_ = max(high, src[1])
low_ = min(low, src[1])
bp = src - low_
tr_ = high_ - low_
avg7 = average(bp, tr_, length7)
avg14 = average(bp, tr_, length14)
avg28 = average(bp, tr_, length28)
uoout = 100 * (4*avg7 + 2*avg14 + avg28)/7
uopoint = uoout > 70 ? 1 : uoout < 30 ? -1 : 0
//IC
conversionPeriods = 9
basePeriods = 26
laggingSpan2Periods = 52
displacement = 26
donchian(len) => avg(lowest(len), highest(len))
baseLine = donchian(basePeriods)
icpoint = src > baseLine ? 1 : -1

//HMA
hullma = wma(2*wma(src, 9/2)-wma(src, 21), round(sqrt(21)))
hmapoint = src > hullma ? 2 : -2
//
//
trendDetectionLength =4
float trend = na
float wave = na
float vol = na
mov = close>close[1] ? 1 : close<close[1] ? -1 : 0
trend := (mov != 0) and (mov != mov[1]) ? mov : nz(trend[1])
isTrending = rising(close, trendDetectionLength) or falling(close, trendDetectionLength)
wave := (trend != nz(wave[1])) and isTrending ? trend : nz(wave[1])
vol := wave == wave[1] ? (nz(vol[1])+volume) : volume
up1 = wave == 1 ? vol : 0
dn1 = wave == 1 ? 0 : vol
Weis= up1 > dn1 ? 2 : -2


//

roclen =20
ccilen =21
dilen = 5
dirmov(len) =>
	up = change(high)
	down = -change(low)
	truerange = rma(tr, len)
	plus = fixnan(100 * rma(up > down and up > 0 ? up : 0, len) / truerange)
	minus = fixnan(100 * rma(down > up and down > 0 ? down : 0, len) / truerange)
	[plus, minus]

f_draw_infopanel(_x, _y, _line, _text, _color)=>
    _rep_text = ""
    for _l = 0 to _line
        _rep_text := _rep_text + "\n"
    _rep_text := _rep_text + _text
    var label _la = na
    label.delete(_la)
    _la := label.new(
         x=_x, y=_y, 
         text=_rep_text, xloc=xloc.bar_time, yloc=yloc.price, 
         color=color.black, style=label.style_labelup, textcolor=_color, size=size.normal)

TD = 0
TS = 0
TD := close > close[4] ? nz(TD[1]) + 1 : 0
TS := close < close[4] ? nz(TS[1]) + 1 : 0
TDUp = TD - valuewhen(TD < TD[1], TD , 1 )
TDDn = TS - valuewhen(TS < TS[1], TS , 1 )
td = TDUp > 0 ? 2 : TDDn > 0 ? -2 : 0
roc = roc(close, roclen)
Roc=roc > 0 ? 1 : -1
cci = cci(close, ccilen)
CCI=cci > 0? 2 : -2
[plus, minus] = dirmov(dilen)
dmi = plus - minus
DMI= dmi >= 0? 2 : -2
//
STT=trend10 == 1 ? 1 : -1
//
periods = 2
smooth1 =  14
price = close
fn(src, length) => 
    MA_s= 0.0
    MA_s:=(src + nz(MA_s[1] * (length-1)))/length
    MA_s
r11 = ema( price, periods ) 
r22 = iff( price > r11, price - r11, 0 ) 
r3 = iff( price < r11, r11 - price, 0 ) 
r4 = fn( r22, smooth1 ) 
r5 = fn( r3, smooth1 ) 
rr = iff( r5 == 0, 100, 100 - ( 100 / ( 1 + ( r4 / r5 ) ) ) ) 

length = 20,fast = 7,slow = 13
//
src10 = rr
er = abs(change(src,length))/sum(abs(change(src10)),length)
dev = er*stdev(src10*2,fast) + (1-er)*stdev(src10*2,slow)
a = 0.
a := bar_index < 9 ? src10 : src10 > a[1] + dev ? src10 : src10 < a[1] - dev ? src10 : a[1]
//

rsi=fixnan(a > a[1] ? 3 : a < a[1] ?-3 : na)
//
totalpoints =rsi+td+STT+Roc+DMI+ CCI+Weis+smapoint  + aopoint + mompoint + histpoint  + bbpoint  + icpoint  + hmapoint
//
piz=input(1)
tt=sma(totalpoints,piz)

//

zero=0
down = crossunder(tt, 0) 
up = crossover(tt, -0) 

//Alerts
/////// Alerts /////
alertcondition(down,title="sell")
alertcondition(up,title="buy")
//
/////////////// Strategy /////////////// 
long = up
short = down

strategy.entry("Long", strategy.long, when = long) 
strategy.entry("Short", strategy.short, when = short) 


More