The Dynamic Pattern Trend Reversal strategy uses linear regression to predict prices and moving average lines to form pattern for generating trading signals. It produces buy signals when the predicted price crosses above the moving average line upwards and sell signals when crossing below downwards, capturing trend reversals.
The combination of above signals with multiple confirmations avoids false breakouts and improves accuracy.
The Dynamic Pattern Trend Reversal strategy integrates linear regression prediction and moving average patterns to capture trend reversals. Compared to single indicator strategies, it has higher reliability. Further improvements on parameters, confirmations and other optimizations can enhance signal quality and profitability.
/*backtest start: 2023-12-05 00:00:00 end: 2023-12-12 00:00:00 period: 1m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © stocktechbot //@version=5 strategy("Linear Cross", overlay=true, margin_long=100, margin_short=0) //Linear Regression vol = volume // Function to calculate linear regression linregs(y, x, len) => ybar = math.sum(y, len)/len xbar = math.sum(x, len)/len b = math.sum((x - xbar)*(y - ybar),len)/math.sum((x - xbar)*(x - xbar),len) a = ybar - b*xbar [a, b] // Historical stock price data price = close // Length of linear regression len = input(defval = 21, title = 'Strategy Length') linearlen=input(defval = 9, title = 'Linear Lookback') [a, b] = linregs(price, vol, len) // Calculate linear regression for stock price based on volume //eps = request.earnings(syminfo.ticker, earnings.actual) //MA For double confirmation out = ta.sma(close, 200) outf = ta.sma(close, 50) outn = ta.sma(close, 90) outt = ta.sma(close, 21) outthree = ta.sma(close, 9) // Predicted stock price based on volume predicted_price = a + b*vol // Check if predicted price is between open and close is_between = open < predicted_price and predicted_price < close //MACD //[macdLine, signalLine, histLine] = ta.macd(close, 12, 26, 9) // Plot predicted stock price plot(predicted_price, color=color.rgb(65, 59, 150), linewidth=2, title="Predicted Price") plot(ta.sma(predicted_price,linearlen), color=color.rgb(199, 43, 64), linewidth=2, title="MA Predicted Price") //offset = input.int(title="Offset", defval=0, minval=-500, maxval=500) plot(out, color=color.blue, title="MA200") [macdLine, signalLine, histLine] = ta.macd(predicted_price, 12, 26, 9) //BUY Signal longCondition=false mafentry =ta.sma(close, 50) > ta.sma(close, 90) //matentry = ta.sma(close, 21) > ta.sma(close, 50) matwohun = close > ta.sma(close, 200) twohunraise = ta.rising(out, 2) twentyrise = ta.rising(outt, 2) macdrise = ta.rising(macdLine,2) macdlong = ta.crossover(predicted_price, ta.wma(predicted_price,linearlen)) and (signalLine < macdLine) if macdlong and macdrise longCondition := true if (longCondition) strategy.entry("My Long Entry Id", strategy.long) //Sell Signal lastEntryPrice = strategy.opentrades.entry_price(strategy.opentrades - 1) daysSinceEntry = len daysSinceEntry := int((time - strategy.opentrades.entry_time(strategy.opentrades - 1)) / (24 * 60 * 60 * 1000)) percentageChange = (close - lastEntryPrice) / lastEntryPrice * 100 //trailChange = (ta.highest(close,daysSinceEntry) - close) / close * 100 //label.new(bar_index, high, color=color.black, textcolor=color.white,text=str.tostring(int(trailChange))) shortCondition=false mafexit =ta.sma(close, 50) < ta.sma(close, 90) matexit = ta.sma(close, 21) < ta.sma(close, 50) matwohund = close < ta.sma(close, 200) twohunfall = ta.falling(out, 3) twentyfall = ta.falling(outt, 2) shortmafall = ta.falling(outthree, 1) macdfall = ta.falling(macdLine,1) macdsell = macdLine < signalLine if macdfall and macdsell and (macdLine < signalLine) and ta.falling(low,2) shortCondition := true if (shortCondition) strategy.entry("My Short Entry Id", strategy.short)