The resource loading... loading...

Supertrend MACD Quantitative Strategy

Author: ChaoZhang, Date: 2023-12-26 11:13:24
Tags:

img

Overview

This strategy combines the potential trend reversal signals from the Supertrend indicator and MACD indicator, together with the overbought/oversold signals from RSI indicator, to form a relatively stable and efficient system for entry and exit signals. The strategy name is “Supertrend MACD Quantitative Strategy”.

Strategy Logic

The core logic of this strategy lies in the combined use of Supertrend indicator and MACD indicator as criteria for entry signals.

On the Supertrend part, the strategy adopts the direction change of Supertrend indicator as the potential reversal signal. When Supertrend direction turns from up to down, a buy signal is generated. When the direction turns from down to up, a sell signal is generated.

On the MACD part, the strategy uses the slope and zero line crossover of MACD indicator on lower timeframe (daily) to identify potential reversal opportunities. When MACD slope absolute value is large (above threshold) and the slope maintains upward trend, a signal is generated. If MACD line crosses zero line, an auxiliary signal is generated. MACD signals are usually more smooth than Supertrend ones.

For entry signals, the strategy requires Supertrend signal and MACD signal to be in the same direction before sending out trading orders.

In addition, for exit signals, the strategy also adopts the overbought/oversold signals from RSI indicator. When RSI goes above 80, a sell signal is generated. When RSI drops below 20, a buy signal is generated. These help determine reversal timing.

Advantage Analysis

The biggest advantage of this strategy is the diversity of indicator signals. Different indicators can complement each other and make the overall signal more steady and reliable.

Supertrend reversal signals can capture relatively strong short-term trends; MACD slope can judge mid-long term trend strength to avoid being misguided by false reversals; RSI can provide the best entry and exit timing in range-bound market by indicating overbought/oversold levels. Stacking signals from multiple indicators can filter out some noisy trades and achieve higher win rate.

In addition, the timeframe design is also reasonable. Supertrend uses hourly timeframe while MACD uses daily timeframe. This ensures both trading frequency and stability in trend judgment.

Risk Analysis

The main risk of this strategy is the high probability of confusing signals between different indicators. For example, Supertrend may give false reversal while MACD signal does not synchronize. This could lead to unnecessary losses.

In addition, RSI for determining exit timing can also be too early or too late, preventing maximum holding period.

Finally, oversized MACD slope threshold may also miss weaker reversal opportunities.

Optimization Directions

This strategy can be further optimized from the following aspects:

  1. Introduce stop loss mechanism. Stop loss when loss exceeds certain percentage.

  2. Add dynamic threshold for MACD slope judgment. Raise slope threshold when market volatility is high, and lower threshold when market is stable.

  3. Add pullback condition for RSI exit judgment. Require a significant callback after RSI exceeds 80 before considering closing position.

  4. Testing MACD with volume and see if it improves signal reliability

  5. Trying automated parameter tuning to find optimal settings

Conclusion

The “Supertrend MACD Quantitative Strategy” combines signals from multiple indicators to provide entry and exit signals. Its advantages lie in stable signals and relatively high win rate. Further improvements can be achieved through parameter optimization. Risks and optimization directions mainly center around parameter overfitting issues. Overall, this strategy has strong practical value for live trading.


/*backtest
start: 2022-12-19 00:00:00
end: 2023-12-25 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5

strategy("SuperTrend.MACD Strategy", overlay=false, default_qty_type=strategy.percent_of_equity, default_qty_value=100, initial_capital=100000, pyramiding=5, process_orders_on_close=true)

// ---------------- Utility Functions ----------------
getArrayValue(float[] arr, int ago) =>
    if ago >= 0
        array.get(arr, ago >= array.size(arr) ? na: array.size(arr) + -1 * ago -1)
    else
        na

filterNA(float[] a, s, int y) =>
    int x = 0
    if not na(s[0])
        array.push(a, s[0])
        if array.size(a) > y
            array.shift(a)
    a

pine_rsi(float[] x, int y) =>
    x0 = getArrayValue(x, 0)
    x1 = getArrayValue(x, 1)

    u = math.max(x0 - x1, 0) // upward ta.change
    d = math.max(x1 - x0, 0) // downward ta.change
    rs = ta.rma(u, y) / ta.rma(d, y)
    res = 100 - 100 / (1 + rs)
    res

turnAround(float[] arr) =>
    int isTurnAround = 0
    
    now = getArrayValue(arr, 0)
    p1 = getArrayValue(arr, 1)
    p2 = getArrayValue(arr, 2)

    if p1 > now and p1 > p2
        isTurnAround := -1
    else if p1 < now and p1 < p2
        isTurnAround := 1

intergerizeSignal(i) =>
    i>0 ? 1 : i<0 ? -1 : 0

linreg(float[] y, int n, int offset=0) => 
    float slope = na
    float intercept = na

    int endcursor = offset + n - 1

    if array.size(y) > endcursor
        float sumX = 0
        float sumX2 = 0
        float sumY = 0
        float sumY2 = 0
        float sumXY = 0

        for i=offset to endcursor
            yv = array.get(y, i)
            sumY += yv
            sumY2 += math.pow(yv, 2)
            sumX += i
            sumX2 += math.pow(i, 2)
            sumXY += i*yv

        // Pearson correlation coefficient
        r = (n * sumXY - sumX * sumY) / math.sqrt((n * sumY2 - math.pow(sumY, 2)) * (n * sumX2 - math.pow(sumX, 2)))

        // Coefficient of determination
        r2 = math.pow(r, 2)

        meanX = sumX / n
        meanY = sumY / n

        slope := (n * sumXY - sumX * sumY) / (n * sumX2 - math.pow(sumX, 2))
        intercept := meanY - slope * meanX

    [slope, intercept]

isStartOfDay() => dayofweek != dayofweek[1]

// ---------------- Variables ----------------

varip float st_signal = 0
varip float macd_signal = 0
varip float macd_close_signal = 0
varip float histo_signal = 0

var int openSignal = 0
var int closeSignal = 0

// -------------------------------- Supertrend Signal (Open) --------------------------------

// ST calculation
atrPeriod = input(10, "Supertrend ATR Length")
factor = input.float(2.0, "Supertrend Factor", step = 0.01)

[_, direction] = ta.supertrend(factor, atrPeriod)

st_direction_change = ta.change(direction)
if st_direction_change < 0
    st_signal := 4
if st_direction_change > 0
    st_signal := -4

// -------------------------------- MACD Signal (Open + Close) --------------------------------

// MACD Calculation
fastLength = input(12, title="MACD Fast Length")
slowLength = input(26, title="MACD Slow Length")
signalLength = input(9, title="MACD Signal Length")
macdSlowTimeframe = input.timeframe("D", "MACD Timeframe")
macdSlopeLookbackOpen = input(7, title="MACD Slope Lookback - Open")
macdSlopeLookbackClose = input(3, title="MACD Slope Lookback - Close")

dailyClose = request.security(syminfo.tickerid, macdSlowTimeframe, close, barmerge.gaps_on)
[macdLine, signalLine, _] = ta.macd(dailyClose, fastLength, slowLength, signalLength)

// MACD Slope calculation

varip macdHistory = array.new<float>(0)
varip macdSlowSlopeArr = array.new<float>(0)
varip float macdSlowSlope = na
varip float macdCloseSlope = na

if not na(macdLine[0])
    array.push(macdHistory, macdLine[0])
    if array.size(macdHistory) > macdSlopeLookbackOpen
        array.shift(macdHistory)
    [s1, _] = linreg(macdHistory, macdSlopeLookbackOpen)
    macdSlowSlope := s1

    array.push(macdSlowSlopeArr, macdSlowSlope)
    if array.size(macdSlowSlopeArr) > macdSlopeLookbackClose
        array.shift(macdSlowSlopeArr)
    [s2, _] = linreg(macdSlowSlopeArr, macdSlopeLookbackClose)
    macdCloseSlope := s2

// MACD Signal Calculation
// > open signal
threshold_macdSlowSlope = input.float(0.75, "MACD Slope Open Threshold", step = 0.05)

macdSlowSlopeOverThreshold = math.abs(macdSlowSlope) >= threshold_macdSlowSlope
macdSlowSlopeTrend = macdSlowSlope - getArrayValue(macdSlowSlopeArr, 1)
macdSlowSlopeTrendConfirm = macdSlowSlope*macdSlowSlopeTrend >0

if (macdSlowSlopeOverThreshold and macdSlowSlopeTrendConfirm)
    macd_signal := 3*macdSlowSlope/math.abs(macdSlowSlope)
else
    macd_signal := 0

// > close signal
int macdCloseSignal = 0
macdCloseSignal := intergerizeSignal(macdCloseSlope)

// Histogram signal Calculation
histSlow = macdLine - signalLine

if (ta.crossover(histSlow, 0))
	histo_signal := 2
if (ta.crossunder(histSlow, 0))
	histo_signal := -2

// -------------------------------- RSI Signal (Close) --------------------------------
int rsiCloseSignal = 0
varip float rsiSlow = na

rsiPeriod = input(14, title="RSI Period")

varip dailyCloseRSIFilter = array.new_float()

// rewrite pine_rsi to remove NaN value from series at calculation
dailyCloseRSIFilter := filterNA(dailyCloseRSIFilter, dailyClose, rsiPeriod)

if not na(dailyClose[0])
    rsiSlow := pine_rsi(dailyCloseRSIFilter, rsiPeriod)

if rsiSlow > 80
    rsiCloseSignal := -1
else if rsiSlow < 20
    rsiCloseSignal := 1
else
    rsiCloseSignal := 0

// -------------------------------- Overall Signal --------------------------------

// Close signal
closeSignals = array.from(macdCloseSignal, rsiCloseSignal)
closeSignal := array.includes(closeSignals, 1) ? 1 : array.includes(closeSignals, -1) ? -1 : 0
closeSignal := closeSignal * 5

// Open signal
if (macd_signal * st_signal > 0) and (macd_signal * macd_close_signal >= 0)
    openSignal := intergerizeSignal(st_signal)
    openSignal := openSignal * 6
else
    openSignal := 0

// -------------------------------- Order --------------------------------
// if strategy.position_size == 0
if openSignal * closeSignal >=0
    if openSignal > 0
        strategy.entry("Long Entry", strategy.long)
    else if openSignal < 0
        strategy.entry("Short Entry", strategy.short)

if strategy.position_size != 0
    if closeSignal < 0
        strategy.close("Long Entry")
    if closeSignal > 0
        strategy.close("Short Entry")


// -------------------------------- Plot --------------------------------

plot(closeSignal, title="Close Signal", color=color.red, linewidth = 1, style=plot.style_area)
plot(openSignal, title="Open Signal", color=color.green, linewidth = 1, style=plot.style_area)
plot(st_signal, title="ST Signal", color=color.black, linewidth = 1, style=plot.style_circles)
plot(macd_signal, title="MACD Signal", color=color.blue, linewidth = 1, style=plot.style_circles)
// plot(macdSlowSlope, title="macd slow slope", color=color.purple, linewidth = 1, style=plot.style_line)
// plot(macdCloseSlope, title="macd slow slope", color=color.lime, linewidth = 1, style=plot.style_line)

hline(0, "Zero Line", color=color.gray)


More