Trend Following Strategy with Moving Average and Candlestick Patterns

Author: ChaoZhang, Date: 2024-02-02 17:53:43
Tags:

Trend Following Strategy with Moving Average and Candlestick Patterns

Overview

This strategy combines the moving average to determine the trend direction and candlestick patterns to identify potential reversal points, in order to implement trend following trading. The strategy first uses the moving average to judge the overall trend direction, and then looks for potential reversal candlestick patterns as entry signals along the trend direction to track the trend.

Strategy Principle

The strategy adopts a 10-day simple moving average to determine the price trend. When the price is above the moving average, it is considered to be in an uptrend; when the price is below the moving average, it is considered to be in a downtrend.

After determining the trend direction, the strategy will judge potential trend reversal points based on a series of bullish and bearish candlestick patterns. Common bullish patterns include Morning Star, Bullish Engulfing, Three White Soldiers, etc; common bearish patterns include Evening Star, Three Black Crows, etc. When a bullish signal is identified in an uptrend, the strategy will place a buy order; when a bearish signal is identified in a downtrend, the strategy will place a sell order.

In addition, the strategy also incorporates major support and resistance levels to determine the specific entry price. For example, when buying in an uptrend, it will buy when breaking through the first support level.

Advantages

The biggest advantage of this strategy is that it combines both trend judgment and reversal signals so that it can capture trend turning points in a timely manner to follow the trend. Compared with simple moving average strategies, this strategy can greatly improve the profitability.

In addition, the incorporation of candlestick pattern judgment also enhances its ability to deal with sudden events. When a low probability event causes a false breakout in the market, the candlestick pattern can play a role of filter to avoid wrong trades.

Risks

The main risks of this strategy lie in the accuracy of moving average parameter settings and candlestick pattern judgment. If the moving average period is set improperly, it will lead to wrong trend determination; if the judgment of candlestick patterns has errors, it will also lead to wrong trading decisions.

In addition, reversal candlestick patterns cannot guarantee trend reversal with 100% certainty, so there is still some risks in the strategy. When the market sees larger reversals, it may bring greater losses to the strategy.

Optimization Directions

There is still considerable room for optimization in this strategy. For example, we can consider dynamically adjusting the parameters of the moving average and adopting different moving average periods in different market stages. We can also introduce machine learning methods to train candlestick pattern judgment models using historical data to improve judgment accuracy.

In addition, we can also consider incorporating more factors to judge trends and hot areas, such as trading volume changes, volatility indicators, etc., to make the strategy more comprehensive and robust.

Conclusion

In general, this strategy is very suitable for tracking mid-term trends in the stock market and can obtain relatively high and stable returns. If further optimized, it has the potential to become a well-functioning quantitative strategy. If investors grasp the use of this strategy, they can also use it to build long-term holdings to control individual stock risks while obtaining better excess returns.


/*backtest
start: 2024-01-01 00:00:00
end: 2024-01-31 23:59:59
period: 3h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
strategy("Trend Following Strategy with Candlestick Patterns", overlay=true)

// Moving Average
ma_period = input(10, title="Moving Average Period")
moving_average = ta.sma(close, ma_period)

// Candlestick Patterns
// Custom Function
abs(x) => x >= 0 ? x : -x

// Candlestick Patterns
isDoji() =>
    (close - open) <= (high - low) * 0.1

isMarubozuWhite() =>
    close == high and open == low and close > open

isHammer() =>
    (high - low) >= 3 * abs(open - close) and (close - low) / (0.001 + high - low) > 0.6 and (open - low) / (0.001 + high - low) > 0.6

isInvertedHammer() =>
    (high - low) >= 3 * abs(open - close) and (high - close) / (0.001 + high - low) > 0.6 and (high - open) / (0.001 + high - low) > 0.6

isLongLowerShadow() =>
    (low - close) > 2 * abs(open - close) and (low - open) / (0.001 + high - low) > 0.6

isUpsideTasukiGap() =>
    close[1] < open[1] and open > close and open > close[1] and close < open[1]

isRisingWindow() =>
    high[1] < low and close > open

isPiercing() =>
    close[1] < open[1] and close > open and close > ((open + low) / 2) and close < open[1] and open < close[1]

isBullishEngulfing() =>
    close[1] < open[1] and close > open and high > high[1] and low < low[1]

isTweezerBottom() =>
    low == ta.valuewhen(low == ta.lowest(low, 10), low, 0) and low == ta.valuewhen(low == ta.lowest(low, 20), low, 0)

isBullishAbandonedBaby() =>
    close[2] < open[2] and close[1] > open[1] and low[1] > ta.valuewhen(high == ta.highest(high, 2), high, 0) and open > close and close > ta.valuewhen(high == ta.highest(high, 2), high, 0)

isMorningStar() =>
    close[2] < open[2] and close[1] < open[1] and close > open[1] and open < close[2] and open > close[1]

isMorningDojiStar() =>
    close[2] < open[2] and close[1] < open[1] and isDoji() and close > open[1] and open < close[2] and open > close[1]

isDragonflyDoji() =>
    isDoji() and (high - close) / (0.001 + high - low) < 0.1 and (open - low) / (0.001 + high - low) > 0.6

isThreeWhiteSoldiers() =>
    close[2] < open[2] and close[1] < open[1] and close > open and open < close[2] and open < close[1] and close > open[1]

isRisingThreeMethods() =>
    close[4] < open[4] and close[1] < open[1] and close > open and open < close[4] and open < close[1] and close > open[1]

isMarubozuBlack() =>
    close == low and open == high and open > close

isGravestoneDoji() =>
    isDoji() and (close - low) / (0.001 + high - low) < 0.1 and (high - open) / (0.001 + high - low) > 0.6

isHangingMan() =>
    (high - low) >= 4 * abs(open - close) and (open - close) / (0.001 + high - low) > 0.6 and (high - open) / (0.001 + high - low) > 0.6

isLongUpperShadow() =>
    (high - open) > 2 * abs(open - close) and (high - close) / (0.001 + high - low) > 0.6

isDownsideTasukiGap() =>
    close[1] > open[1] and open < close and open < close[1] and close > open[1]

isFallingWindow() =>
    low[1] > high and close < open

isDarkCloudCover() =>
    close[1] > open[1] and close < open and close < ((open + high) / 2) and close > open[1] and open > close[1]

isBearishEngulfing() =>
    close[1] > open[1] and close < open and high > high[1] and low < low[1]

isTweezerTop() =>
    high == ta.valuewhen(high == ta.highest(high, 10), high, 0) and high == ta.valuewhen(high == ta.highest(high, 20), high, 0)

isAbandonedBaby() =>
    close[2] > open[2] and close[1] < open[1] and high[1] < ta.valuewhen(low == ta.lowest(low, 2), low, 0) and open < close and close < ta.valuewhen(low == ta.lowest(low, 2), low, 0)

isEveningDojiStar() =>
    close[2] > open[2] and close[1] > open[1] and isDoji() and close < open[1] and open > close[2] and open < close[1]

isEveningStar() =>
    close[2] > open[2] and close[1] > open[1] and close < open[1] and open > close[2] and open < close[1]

isThreeBlackCrows() =>
    close[2] > open[2] and close[1] > open[1] and close < open and open > close[2] and open > close[1] and close < open[1]

isFallingThreeMethods() =>
    close[4] > open[4] and close[1] > open

isShootingStar() =>
    (high - low) >= 3 * abs(open - close) and (high - close) / (0.001 + high - low) > 0.6 and (high - open) / (0.001 + high - low) > 0.6

doji = isDoji()
marubozuWhite = isMarubozuWhite()
hammer = isHammer()
invertedHammer = isInvertedHammer()
longLowerShadow = isLongLowerShadow()
upsideTasukiGap = isUpsideTasukiGap()
risingWindow = isRisingWindow()
piercing = isPiercing()
bullishEngulfing = isBullishEngulfing()
tweezerBottom = isTweezerBottom()
bullishAbandonedBaby = isBullishAbandonedBaby()
morningStar = isMorningStar()
morningDojiStar = isMorningDojiStar()
dragonflyDoji = isDragonflyDoji()
threeWhiteSoldiers = isThreeWhiteSoldiers()
risingThreeMethods = isRisingThreeMethods()
marubozuBlack = isMarubozuBlack()
gravestoneDoji = isGravestoneDoji()
hangingMan = isHangingMan()
longUpperShadow = isLongUpperShadow()
downsideTasukiGap = isDownsideTasukiGap()
fallingWindow = isFallingWindow()
darkCloudCover = isDarkCloudCover()
bearishEngulfing = isBearishEngulfing()
tweezerTop = isTweezerTop()
abandonedBaby = isAbandonedBaby()
eveningDojiStar = isEveningDojiStar()
eveningStar = isEveningStar()
threeBlackCrows = isThreeBlackCrows()
fallingThreeMethods = isFallingThreeMethods()
shootingStar = isShootingStar()
isBullishPattern() =>
    (isMarubozuWhite() or isHammer() or isInvertedHammer() or isDoji() or isMorningStar() or isBullishEngulfing() or isThreeWhiteSoldiers() or isMarubozuBlack() or isHangingMan() or isDownsideTasukiGap() or isDarkCloudCover())

isBearishPattern() =>
    (isMarubozuBlack() or isInvertedHammer() or isLongUpperShadow() or isTweezerTop() or isGravestoneDoji() or isEveningStar() or isBearishEngulfing() or isThreeBlackCrows() or isShootingStar())

isBullishCandle = isBullishPattern()
isBearishCandle = isBearishPattern()

// Calculate Pivot Points
pivotPoint(high, low, close) =>
    (high + low + close) / 3

r1 = pivotPoint(high[1], low[1], close[1]) * 2 - low[1]
s1 = pivotPoint(high[1], low[1], close[1]) * 2 - high[1]

r2 = pivotPoint(high[1], low[1], close[1]) + (high[1] - low[1])
s2 = pivotPoint(high[1], low[1], close[1]) - (high[1] - low[1])

r3 = high[1] + 2 * (pivotPoint(high[1], low[1], close[1]) - low[1])
s3 = low[1] - 2 * (high[1] - pivotPoint(high[1], low[1], close[1]))
// Trend Identification
is_uptrend = close > moving_average
is_downtrend = close < moving_average
// Entry and Exit Conditions with Trend Identification
enterLong = is_uptrend and isBullishCandle and close > r1
exitLong = is_uptrend and (bearishEngulfing or doji or close < s1)

enterShort = is_downtrend and isBearishCandle and close < s1
exitShort = is_downtrend and (bullishEngulfing or doji or close > r1)



// Strategy Execution
if enterLong and strategy.position_size == 0 and strategy.position_size[1] == 0 and close > r1
    strategy.entry("Buy", strategy.long, qty=1)

if exitLong and strategy.position_size > 0
    strategy.close("Buy")

if enterShort and strategy.position_size == 0 and close < s1
    strategy.entry("Sell", strategy.short, qty=1)

if exitShort and strategy.position_size < 0
    strategy.close("Sell")


// Stop-Loss and Trailing Stop-Loss
stop_loss_pct = input(2.0, title="Stop Loss Percentage")
trailing_stop_loss_pct = input(1.0, title="Trailing Stop Loss Percentage")
trailing_stop_loss_active = input(true, title="Trailing Stop Loss Active")

// Stop-Loss
stop_loss_level = strategy.position_avg_price * (1 - stop_loss_pct / 100)
strategy.exit("Stop Loss", "Buy", loss=stop_loss_level)

// Trailing Stop-Loss


// Plotting Moving Average
plot(moving_average, color=color.blue, title="Moving Average", linewidth=2)

// Plotting Candlestick Patterns
plotshape(isBullishCandle, title="Bullish Candle", location=location.belowbar, color=color.green, style=shape.labelup)
plotshape(isBearishCandle, title="Bearish Candle", location=location.abovebar, color=color.red, style=shape.labeldown)

// Plotting Support and Resistance Levels
//hline(r1, "Resistance Level 1", color=color.red, linestyle=hline.style_dotted)
//hline(s1, "Support Level 1", color=color.green, linestyle=hline.style_dotted)


More