This strategy is an intelligent trading system based on multiple moving averages and trend intensity. It measures market trend strength by analyzing the deviation between price and moving averages of different periods, combined with ATR volatility indicator for position management and risk control. The strategy offers high customizability and can flexibly adjust parameters according to different market environments and trading needs.
The core logic of the strategy is based on the following aspects: 1. Uses two moving averages (fast and slow) of different periods to identify trend direction and crossing signals 2. Quantifies trend strength by calculating the deviation between price and moving averages (in points) 3. Incorporates candlestick patterns (engulfing, hammer, shooting star, doji) as confirmation signals 4. Uses ATR indicator to dynamically calculate stop loss and profit targets 5. Employs partial profits and trailing stops for order management
This strategy builds a comprehensive trading system by combining moving averages, trend strength quantification, candlestick patterns, and dynamic risk management. It maintains strategic simplicity while enhancing trading reliability through multiple confirmation mechanisms. The strategy’s high customizability allows it to adapt to different trading styles and market environments, but attention must be paid to parameter optimization and risk control during implementation.
/*backtest start: 2024-12-03 00:00:00 end: 2024-12-10 00:00:00 period: 10m basePeriod: 10m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=5 strategy("Customizable Strategy with Signal Intensity Based on Pips Above/Below MAs", overlay=true) // Customizable Inputs // Account and Risk Management account_size = input.int(100000, title="Account Size (USD)", minval=1) compounded_results = input.bool(true, title="Compounded Results") risk_per_trade = input.float(1.0, title="Risk per Trade (%)", minval=0.1, maxval=100) / 100 // Moving Averages Settings ma1_length = input.int(50, title="Moving Average 1 Length", minval=1) ma2_length = input.int(200, title="Moving Average 2 Length", minval=1) // Higher Time Frame for Moving Averages ma_htf = input.timeframe("D", title="Higher Time Frame for MA Delay") // Signal Intensity Range based on pips signal_intensity_min = input.int(0, title="Signal Intensity Start (Pips)", minval=0, maxval=1000) signal_intensity_max = input.int(1000, title="Signal Intensity End (Pips)", minval=0, maxval=1000) // ATR-Based Stop Loss and Take Profit atr_length = input.int(14, title="ATR Length", minval=1) atr_multiplier_stop = input.float(1.5, title="Stop Loss Size (ATR Multiplier)", minval=0.1) atr_multiplier_take_profit = input.float(2.5, title="Take Profit Size (ATR Multiplier)", minval=0.1) // Trailing Stop and Partial Profit trailing_stop_rr = input.float(2.0, title="Trailing Stop (R:R)", minval=0) partial_profit_percentage = input.float(50, title="Take Partial Profit (%)", minval=0, maxval=100) // Trend Filter Settings trend_filter_enabled = input.bool(true, title="Trend Filter Enabled") trend_filter_sensitivity = input.float(50, title="Trend Filter Sensitivity", minval=0, maxval=100) // Candle Pattern Type for Entry entry_candle_type = input.string("Any", title="Entry Candle Type", options=["Any", "Engulfing", "Hammer", "Shooting Star", "Doji"]) // Moving Average Entry Conditions ma_entry_condition = input.string("Both", title="MA Entry", options=["Fast Above Slow", "Fast Below Slow", "Both"]) // Trade Direction (Long, Short, or Both) trade_direction = input.string("Both", title="Trade Direction", options=["Long", "Short", "Both"]) // ATR Calculation atr_value = ta.atr(atr_length) // Moving Average Calculations (using Higher Time Frame) ma1_htf = ta.sma(request.security(syminfo.tickerid, ma_htf, close), ma1_length) ma2_htf = ta.sma(request.security(syminfo.tickerid, ma_htf, close), ma2_length) // Candle Pattern Conditions is_engulfing = close[1] < open[1] and close > open and high > high[1] and low < low[1] is_hammer = (high - low) > 3 * (close - open) and (close > open) and (low == ta.lowest(low, 5)) is_shooting_star = (high - low) > 3 * (open - close) and (open > close) and (high == ta.highest(high, 5)) is_doji = (close - open) <= ((high - low) * 0.1) // Apply the selected candle pattern candle_condition = false if entry_candle_type == "Any" candle_condition := true if entry_candle_type == "Engulfing" candle_condition := is_engulfing if entry_candle_type == "Hammer" candle_condition := is_hammer if entry_candle_type == "Shooting Star" candle_condition := is_shooting_star if entry_candle_type == "Doji" candle_condition := is_doji // Moving Average Entry Conditions ma_cross_above = ta.crossover(ma1_htf, ma2_htf) ma_cross_below = ta.crossunder(ma1_htf, ma2_htf) // Calculate pips distance to MAs and normalize it for signal intensity pip_size = syminfo.mintick * 10 // Assuming Forex; for other asset classes, modify as needed // Calculate distances in pips between price and MAs distance_to_ma1_pips = math.abs(close - ma1_htf) / pip_size distance_to_ma2_pips = math.abs(close - ma2_htf) / pip_size // Calculate signal intensity based on the pips distance // Normalize the signal intensity between the user-specified min and max signal_intensity = math.min(math.max((distance_to_ma1_pips + distance_to_ma2_pips), signal_intensity_min), signal_intensity_max) // Trend Filter Condition (Optional) trend_condition = false if trend_filter_enabled trend_condition := ta.sma(close, ma2_length) > ta.sma(close, ma2_length + int(trend_filter_sensitivity)) // Entry Conditions Based on MA, Candle Patterns, and Trade Direction long_condition = (trade_direction == "Long" or trade_direction == "Both") and (ma_entry_condition == "Fast Above Slow" or ma_entry_condition == "Both") and ma_cross_above and candle_condition and (not trend_filter_enabled or trend_condition) and signal_intensity > signal_intensity_min short_condition = (trade_direction == "Short" or trade_direction == "Both") and (ma_entry_condition == "Fast Below Slow" or ma_entry_condition == "Both") and ma_cross_below and candle_condition and (not trend_filter_enabled or not trend_condition) and signal_intensity > signal_intensity_min // Position Sizing Based on Risk Per Trade and ATR for Stop Loss risk_amount = account_size * risk_per_trade stop_loss_atr = atr_multiplier_stop * atr_value // Calculate the position size based on the risk amount and ATR stop loss position_size = risk_amount / stop_loss_atr // If compounded results are not enabled, adjust position size for non-compounded returns if not compounded_results position_size := position_size / account_size * 100000 // Adjust for non-compounded results // Convert take profit and stop loss from ATR to USD pip_value = syminfo.mintick * 10 // Assuming Forex; for other asset classes, modify as needed take_profit_atr = atr_multiplier_take_profit * atr_value take_profit_usd = (take_profit_atr * pip_value) * position_size stop_loss_usd = (stop_loss_atr * pip_value) * position_size // Trailing Stop trail_stop_level = trailing_stop_rr * stop_loss_atr // Initialize long_box_id and short_box_id as boxes (not ints) var box long_box_id = na var box short_box_id = na // Track Monthly Profit var float monthly_profit = 0.0 if (month(timenow) != month(timenow[1])) // New month monthly_profit := 0 // Long Trade Management if long_condition strategy.entry("Long", strategy.long, qty=position_size) // Partial Profit at 50% position close when 1:1 risk/reward strategy.exit("Partial Profit", from_entry="Long", limit=strategy.position_avg_price + stop_loss_atr, qty_percent=partial_profit_percentage / 100) // Full take profit and stop loss with trailing stop strategy.exit("Take Profit Long", from_entry="Long", limit=strategy.position_avg_price + take_profit_atr, stop=strategy.position_avg_price - stop_loss_atr, trail_offset=trail_stop_level) // Delete the old box if it exists if not na(long_box_id) box.delete(long_box_id) // Plot Take Profit and Stop Loss for Long Positions // long_box_id := box.new(left=bar_index - 1, top=strategy.position_avg_price + take_profit_atr, right=bar_index, bottom=strategy.position_avg_price - stop_loss_atr, bgcolor=color.new(color.green, 90), border_width=1, border_color=color.new(color.green, 0)) // Short Trade Management if short_condition strategy.entry("Short", strategy.short, qty=position_size) // Partial Profit at 50% position close when 1:1 risk/reward strategy.exit("Partial Profit", from_entry="Short", limit=strategy.position_avg_price - stop_loss_atr, qty_percent=partial_profit_percentage / 100) // Full take profit and stop loss with trailing stop strategy.exit("Take Profit Short", from_entry="Short", limit=strategy.position_avg_price - take_profit_atr, stop=strategy.position_avg_price + stop_loss_atr, trail_offset=trail_stop_level) // Delete the old box if it exists // if not na(short_box_id) // box.delete(short_box_id) // Plot Take Profit and Stop Loss for Short Positions // short_box_id := box.new(left=bar_index - 1, top=strategy.position_avg_price + stop_loss_atr, right=bar_index, bottom=strategy.position_avg_price - take_profit_atr, bgcolor=color.new(color.red, 90), border_width=1, border_color=color.new(color.red, 0)) // Plot MAs and Signals plot(ma1_htf, color=color.blue, title="MA1 (HTF)") plot(ma2_htf, color=color.red, title="MA2 (HTF)") plotshape(series=long_condition, location=location.belowbar, color=color.green, style=shape.labelup, title="Buy Signal", text="BUY") plotshape(series=short_condition, location=location.abovebar, color=color.red, style=shape.labeldown, title="Sell Signal", text="SELL")