En la carga de los recursos... Cargando...

FMZ ha lanzado el motor local de pruebas de Python

El autor:FMZ~Lydia, Creado: 2023-07-12 15:22:42, Actualizado: 2024-01-04 21:05:31

img

FMZ ha lanzado el motor local de pruebas de Python

FMZ backtest motor paquete de Python soporta Python2 y Python3; soporta sistemas Windows, Linux y Mac OS.

Instalación

Introduzca el siguiente comando en la línea de comandos:

pip install https://github.com/fmzquant/backtest_python/archive/master.zip
  • Nota: el Al instalar el motor en el sistema Mac OS, si hay restricciones de seguridad, debe agregar sudo delante de pip, y se le solicitará la contraseña del sistema antes de que se ejecute todo el comando de instalación.

Ejemplo sencillo

'''backtest
start: 2018-02-19 00:00:00
end: 2018-03-22 12:00:00
period: 15m
exchanges: [{"eid":"OKEX","currency":"LTC_BTC","balance":3,"stocks":0}]
'''
from fmz import *
task = VCtx(__doc__) # initialize backtest engine from __doc__
print exchange.GetAccount()
print exchange.GetTicker()
print task.Join() # print backtest result

La cadena de configuración se puede generar automáticamente guardando la configuración de backtest en la página Edición de estrategia.

meta

Documentación

Documentación de la API: (es decir, la documentación que llama funciones como GetAccount en la demostración)

Observaciones sencillas del código de Python:

'''backtest
start: 2018-02-19 00:00:00
end: 2018-03-22 12:00:00
period: 15m
exchanges: [{"eid":"OKEX","currency":"LTC_BTC","balance":3,"stocks":0}]
'''
from fmz import *           # Call the FMZ Quant library 
task = VCtx(__doc__)        # Initialize the backtest engine from __doc__ by calling VCtx
print exchange.GetAccount() # Test GetAccount function, and print the account information of the backtested platform 
print exchange.GetTicker()  # Test GetTicker function, and print the market quote information of backtest system 
print task.Join()           # Call the initialized task object, and print the backtest result    
  • - ¿Por qué no?

    With two underscores, "__doc__" is used to access the first unassigned string in modules like class declaration or function declaration; the string can be enclosed by """ ""","" "" or ' ', which is to pass the backtest configuration information of '''backtest ... ''' in the code into the VCtx class constructor to construct objects.
    
  • Modificar el código de backtest, para ver cómo llamar específicamente a Log y GetTicker.

    # coding=UTF-8
    
    '''backtest
    start: 2018-02-19 00:00:00
    end: 2018-03-22 12:00:00
    period: 15m
    exchanges: [{"eid":"OKEX","currency":"LTC_BTC","balance":3,"stocks":0}]
    '''
    
    from fmz import *                                               # Call the FMZ Quant library
    task = VCtx(__doc__) # initialize backtest engine from __doc__  # Call VCtx function according to the initialization of __doc__
    print exchange.GetAccount()                                     # Test GetAccount and print the account information of the tested platform by the backtest system
    Log("\n call Log")
    Log("Call exchange.GetTicker() : ", exchange.GetTicker())
    print task.Join()                                                # Call the initialized task object, and print the backtest result 
    
    • Imprimir el intercambio.GetAccount ((():
    {'Balance': 3.0, 'Stocks': 0.0, 'FrozenBalance': 0.0, 'FrozenStocks': 0.0}
    
    • Log (("\n call Log") 、 Log (("Call exchange.GetTicker() ": ", exchange.GetTicker())

    Los datos impresos se encuentran en la estructura de tarea de impresión.Join():

    {
        "Chart": {
     	   "Cfg": "",
     	   "Datas": []
        },
        "Elapsed": 42000000,
        "Finished": true,
        "Indicators": {},
        "LoadBytes": 441845,
        "LoadElapsed": 24000000,
        "LogsCount": 2,
        "Profit": 0.0,
        "ProfitLogs": [],
        "Progress": 100.0,
        "RuntimeLogs": [                                                  # Here call the printed data  
     	   [1, 1518969600200, 5, "", 0, 0.0, 0.0, "\n call Log", "", ""],
     	   [2, 1518969600400, 5, "", 0, 0.0, 0.0, "Call exchange.GetTicker() :  {'Sell': 0.02113476, 'Volume': 519.6953, 'Buy': 0.02113474, 'Last': 0.02113475, 'High': 0.02113476, 'Time': 1518969600000L, 'Low': 0.02113474}", "", ""]
        ],
        "Snapshort": [{
     	   "Balance": 3.0,
     	   "BaseCurrency": "LTC",
     	   "Commission": 0.0,
     	   "FrozenBalance": 0.0,
     	   "FrozenStocks": 0.0,
     	   "Id": "OKEX",
     	   "QuoteCurrency": "BTC",
     	   "Stocks": 0.0,
     	   "Symbols": {
     		   "LTC_BTC_OKEX": {
     			   "Last": 0.01893785
     		   }
     	   },
     	   "TradeStatus": {}
        }],
        "Status": "",
        "Task": {
     	   "Args": null,
     	   "Exchanges": [{
     		   "Balance": 3,
     		   "BaseCurrency": "LTC",
     		   "BasePeriod": 300000,
     		   "BasePrecision": 4,
     		   "DepthDeep": 5,
     		   "FaultTolerant": 0,
     		   "FeeDenominator": 5,
     		   "FeeMaker": 75,
     		   "FeeMin": 0,
     		   "FeeTaker": 80,
     		   "Id": "OKEX",
     		   "Label": "OKEX",
     		   "PriceTick": 1e-08,
     		   "QuoteCurrency": "BTC",
     		   "QuotePrecision": 8,
     		   "SlipPoint": 0,
     		   "Stocks": 0
     	   }],
     	   "Options": {
     		   "DataServer": "q.botvs.net",
     		   "MaxChartLogs": 800,
     		   "MaxProfitLogs": 800,
     		   "MaxRuntimeLogs": 800,
     		   "NetDelay": 200,
     		   "Period": 900000,
     		   "RetFlags": 189,
     		   "SnapshortPeriod": 300000,
     		   "TimeBegin": 1518969600,
     		   "TimeEnd": 1521691200,
     		   "UpdatePeriod": 5000
     	   }
        },
        "TaskStatus": 1,
        "Time": 1521691200000
    }
    
  • ¿Cómo utilizar una estrategia para backtest en un motor de backtest local?

# !/usr/local/bin/python
# -*- coding: UTF-8 -*-
'''backtest
start: 2018-02-19 00:00:00
end: 2018-03-22 12:00:00
period: 15m
exchanges: [{"eid":"Bitfinex","currency":"BTC_USD","balance":10000,"stocks":3}]
'''
import sys
sys.path.append("/usr/local/lib/python2.7/site-packages")    # Add a path during the backtest, and you can delete it if not needed 

from fmz import *
import math
import talib

task = VCtx(__doc__) # initialize backtest engine from __doc__

# ------------------------------ Strategy Section Starts --------------------------
print exchange.GetAccount()     # Call some interfaces, and print their return values 
print exchange.GetTicker()

def adjustFloat(v):             # Custom functions in the strategy 
    v = math.floor(v * 1000)
    return v / 1000

def onTick(e):
    Log("onTick")
    # ....

#
# ...
# 
# Here the codes including the implementation of custom functions are omitted 

def main():
    InitAccount = GetAccount()
    
    while True:
        onTick(exchange)
        Sleep(1000)
# ------------------------------ Strategy Section Ends --------------------------

try:
    main()                     # Raise EOFError() when the backtest ends, to stop the backtest loop. Therefore, the error needs to be processed by calling task.Join() when the error is detected, and print the backtest result 
except:
    print task.Join()          # print the backtest result 

Más.