En la carga de los recursos... Cargando...

[Guerra de los Milenios] Moneda de divisas estrategias de cobertura de múltiples monedas resultados de las últimas revisiones y las revisiones de la línea K a nivel de minutos (part 4)

El autor:Las hierbas, Creado: 2020-04-16 16:41:48, Actualizado: 2023-10-09 22:48:41

img

La estrategia tiene una versión de actualización de pago, con muchas mejoras, en particular, puedes ponerte en contacto con mi WeChat wangweibing_ustb.

币安期货多币种对冲策略最近的复盘和分钟级K线回测的结果

币安多币种对冲策略的研究报告已经发了3篇,这里是第4篇。前三篇的连接,没看的一定要再看一遍,可以了解策略的成型思路,具体参数的设置和策略逻辑。

很多人还不会使用研究环境,这里有一篇简单的入门介绍:https://www.fmz.com/bbs-topic/4388

本篇文章要复盘以下最近1周的实盘情况,总结一下得失。由于爬取了最近两个月的币安期货分钟线数据,可以更新下原来1hK线的回测结果,更能说明一些参数设置的含义。

# 需要导入的库
import pandas as pd
import requests
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
%matplotlib inline
symbols = ['BTC','ETH', 'BCH', 'XRP', 'EOS', 'LTC', 'TRX', 'ETC', 'LINK', 'XLM', 'ADA', 'XMR', 'DASH', 'ZEC', 'XTZ', 'BNB', 'ATOM', 'ONT', 'IOTA', 'BAT', 'VET', 'NEO', 'QTUM', 'IOST']

分钟线数据

数据从2月21日到4月15下午两点,共77160*24条,这大大降低了我们的回测速度,回测引擎也不够高效,可以自行优化。以后有需要,我会定期追踪一下最新数据。

price_usdt = pd.read_csv('https://www.fmz.com/upload/asset/2b1fa7ab641385067ad.csv',index_col = 0)
price_usdt.shape
(77160, 24)
price_usdt.index = pd.to_datetime(price_usdt.index,unit='ms')
price_usdt_norm = price_usdt/price_usdt.fillna(method='bfill').iloc[0,]
price_usdt_btc = price_usdt.divide(price_usdt['BTC'],axis=0)
price_usdt_btc_norm = price_usdt_btc/price_usdt_btc.fillna(method='bfill').iloc[0,]
class Exchange:
    
    def __init__(self, trade_symbols, leverage=20, commission=0.00005,  initial_balance=10000, log=False):
        self.initial_balance = initial_balance #初始的资产
        self.commission = commission
        self.leverage = leverage
        self.trade_symbols = trade_symbols
        self.date = ''
        self.log = log
        self.df = pd.DataFrame(columns=['margin','total','leverage','realised_profit','unrealised_profit'])
        self.account = {'USDT':{'realised_profit':0, 'margin':0, 'unrealised_profit':0, 'total':initial_balance, 'leverage':0, 'fee':0}}
        for symbol in trade_symbols:
            self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0, 'margin':0, 'unrealised_profit':0,'fee':0}
            
    def Trade(self, symbol, direction, price, amount, msg=''):
        if self.date and self.log:
            print('%-20s%-5s%-5s%-10.8s%-8.6s %s'%(str(self.date), symbol, 'buy' if direction == 1 else 'sell', price, amount, msg))
            
        cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
        open_amount = amount - cover_amount
        
        self.account['USDT']['realised_profit'] -= price*amount*self.commission #扣除手续费
        self.account['USDT']['fee'] += price*amount*self.commission
        self.account[symbol]['fee'] += price*amount*self.commission
        
        if cover_amount > 0: #先平仓
            self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount  #利润
            self.account['USDT']['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage #释放保证金
            
            self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
            self.account[symbol]['amount'] -= -direction*cover_amount
            self.account[symbol]['margin'] -=  cover_amount*self.account[symbol]['hold_price']/self.leverage
            self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
            
        if open_amount > 0:
            total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
            total_amount = direction*self.account[symbol]['amount']+open_amount
            
            self.account['USDT']['margin'] +=  open_amount*price/self.leverage            
            self.account[symbol]['hold_price'] = total_cost/total_amount
            self.account[symbol]['amount'] += direction*open_amount
            self.account[symbol]['margin'] +=  open_amount*price/self.leverage
            
        self.account[symbol]['unrealised_profit'] = (price - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
        self.account[symbol]['price'] = price
        self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*price
        
        return True
    
    def Buy(self, symbol, price, amount, msg=''):
        self.Trade(symbol, 1, price, amount, msg)
        
    def Sell(self, symbol, price, amount, msg=''):
        self.Trade(symbol, -1, price, amount, msg)
        
    def Update(self, date, close_price): #对资产进行更新
        self.date = date
        self.close = close_price
        self.account['USDT']['unrealised_profit'] = 0
        for symbol in self.trade_symbols:
            if np.isnan(close_price[symbol]):
                continue
            self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
            self.account[symbol]['price'] = close_price[symbol]
            self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
            self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
        
        self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)
        self.account['USDT']['leverage'] = round(self.account['USDT']['margin']/self.account['USDT']['total'],4)*self.leverage
        self.df.loc[self.date] = [self.account['USDT']['margin'],self.account['USDT']['total'],self.account['USDT']['leverage'],self.account['USDT']['realised_profit'],self.account['USDT']['unrealised_profit']]

过去一周复盘

策略代码4月10号在微信群放出,刚开始就有一批人跑起了策略2——做空超涨做多超跌,开始的三天,收益很好,回撤很低,迅速激发了大家的热情。部分人放大了杠杆,甚至是满杠杆操作,收益一天就干到了10%。策略广场也公开了大量的实盘,很多人开始不满足与保守的推荐参数,纷纷放大了交易量。4月13后但由于BNB的独立行情,策略开始回撤和横盘,如果按默认3%的trade_value来看,大概回撤了1%。但很多人由于放大的参数,导致赚的少,亏得多。这一波回撤还算及时,让大家冷静了一些。 <img src='https://www.fmz.com/upload/asset/29cd534a29206ac4bbd.png’>

首先看一下策略二的全币种回测,这里由于是分钟更新,Alpha参数需要调整。从实盘来看,曲线走势相符,说明我们的回测可以作为很强的参考,净值从4.13日到达净值顶点一直处于回撤和横盘阶段。

Alpha = 0.001
#price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #普通均线
price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA
trade_symbols = list(set(symbols))
price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1)
e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False)
trade_value = 300
for row in price_usdt.iloc[-7500:].iterrows():
    e.Update(row[0], row[1])
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
        aim_value = -trade_value*round(diff/0.01,1)
        now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
        if aim_value - now_value > 0.5*trade_value:
            e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if aim_value - now_value < -0.5*trade_value:
            e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
stragey_2a = e
(stragey_2a.df['total']/stragey_2d.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>

策略1,做空山寨币策略实现了正收益

trade_symbols = list(set(symbols)-set(['LINK','BTC','XTZ','BCH', 'ETH'])) #做空的币种
e = Exchange(trade_symbols+['BTC'],initial_balance=10000,commission=0.00075,log=False)
trade_value = 2000
for row in price_usdt.iloc[-7500:].iterrows():
    e.Update(row[0], row[1])
    empty_value = 0
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        if e.account[symbol]['value'] - trade_value  < -120 :
            e.Sell(symbol, price, round((trade_value-e.account[symbol]['value'])/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if e.account[symbol]['value'] - trade_value > 120 :
            e.Buy(symbol, price, round((e.account[symbol]['value']-trade_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        empty_value += e.account[symbol]['value']
    price = row[1]['BTC']
    if e.account['BTC']['value'] - empty_value < -120:
        e.Buy('BTC', price, round((empty_value-e.account['BTC']['value'])/price,6),round(e.account['BTC']['realised_profit']+e.account['BTC']['unrealised_profit'],2))
    if e.account['BTC']['value'] - empty_value > 120:
        e.Sell('BTC', price, round((e.account['BTC']['value']-empty_value)/price,6),round(e.account['BTC']['realised_profit']+e.account['BTC']['unrealised_profit'],2))
stragey_1 = e
(stragey_1.df['total']/stragey_1.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>

策略2做多超跌做空超涨盈利分析

把最后账户信息打印出来,可见大部分币种都带来了利润,BNB亏损最多,这也是主要因为BNB走出了一波独立行情,上涨不少,最大偏离了0.06。

pd.DataFrame(stragey_2a.account).T.apply(lambda x:round(x,3)).sort_values(by='realised_profit')
          amount      fee  hold_price  leverage   margin     price  \
BNB      -24.871   17.459      15.527       NaN   19.308    15.701   
ONT     -304.260    6.416       0.394       NaN    6.000     0.397   
IOST       0.000    6.066       0.003       NaN    0.000     0.003   
BCH        1.353   12.002     222.789       NaN   15.073   223.920   
VET  -104305.964   13.095       0.004       NaN   19.295     0.004   
LTC        2.180    4.727      40.800       NaN    4.448    41.540   
TRX     9584.665    8.066       0.012       NaN    5.952     0.013   
ADA    -3573.556    7.060       0.034       NaN    6.000     0.034   
NEO        0.000    3.961       7.312       NaN    0.000     7.345   
ETH       -0.190    6.102     160.908       NaN    1.529   160.600   
BTC        0.022    8.264    6886.980       NaN    7.500  6901.600   
EOS      -36.526    6.573       2.464       NaN    4.500     2.488   
XRP     -318.302    7.951       0.188       NaN    3.000     0.189   
QTUM    -111.029    6.296       1.351       NaN    7.500     1.359   
ATOM    -225.094   16.758       2.377       NaN   26.753     2.419   
ZEC        3.378   15.476      35.786       NaN    6.045    35.960   
IOTA    2294.455    7.898       0.159       NaN   18.185     0.158   
BAT    -1083.685   17.144       0.166       NaN    8.990     0.166   
XMR       -3.887    7.198      54.172       NaN   10.530    54.800   
XLM     2488.594    9.248       0.048       NaN    5.963     0.048   
ETC      -22.629   11.372       5.329       NaN    6.029     5.334   
LINK     218.778   47.897       3.254       NaN   35.592     3.280   
XTZ       45.616   26.661       1.973       NaN    4.500     1.968   
DASH       3.721   20.171      72.810       NaN   13.545    73.320   
USDT         NaN  293.860         NaN      0.46  236.236       NaN   

      realised_profit      total  unrealised_profit    value  
BNB           -98.445        NaN             -4.336  390.497  
ONT           -23.734        NaN             -0.913  120.913  
IOST          -23.349        NaN              0.000    0.000  
BCH           -21.968        NaN              1.530  302.990  
VET           -17.984        NaN             -4.197  390.104  
LTC           -11.820        NaN              1.613   90.567  
TRX            -5.932        NaN              1.250  120.288  
ADA            -3.283        NaN              0.143  119.857  
NEO             4.201        NaN              0.000    0.000  
ETH             5.217        NaN              0.059   30.525  
BTC             5.682        NaN              0.318  150.317  
EOS            13.441        NaN             -0.877   90.877  
XRP            15.581        NaN             -0.255   60.255  
QTUM           18.775        NaN             -0.888  150.888  
ATOM           23.894        NaN             -9.451  544.502  
ZEC            35.389        NaN              0.589  121.486  
IOTA           43.010        NaN             -0.490  363.212  
BAT            45.001        NaN             -0.526  180.325  
XMR            49.430        NaN             -2.441  213.032  
XLM            64.774        NaN              0.938  120.199  
ETC            65.262        NaN             -0.122  120.701  
LINK           84.681        NaN              5.759  717.593  
XTZ           146.921        NaN             -0.228   89.772  
DASH          160.891        NaN              1.896  272.790  
USDT          281.775  10271.146            -10.628      NaN  
# BNB的偏离情况
(price_usdt_btc_norm2.iloc[-7500:].BNB-price_usdt_btc_norm_mean[-7500:]).plot(figsize=(17,6),grid = True);
#price_usdt_btc_norm_mean[-7500:].plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>

如果把BNB,ATOM亏损大户去掉的结果如何,表现好了一些,但最近依然是会回撤阶段。

Alpha = 0.001
price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA
trade_symbols = list(set(symbols)-set(['BNB','ATOM']))
price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1)
e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False)
trade_value = 300
for row in price_usdt.iloc[-7500:].iterrows():
    e.Update(row[0], row[1])
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
        aim_value = -trade_value*round(diff/0.01,1)
        now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
        if aim_value - now_value > 0.5*trade_value:
            e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if aim_value - now_value < -0.5*trade_value:
            e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
stragey_2b = e
(stragey_2b.df['total']/stragey_2b.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>

最近两天流行跑主流币策略,我们也回测一下这种策略。由于币种减少,trade_value适当增加4倍以对比,结果表现不错,尤其是最近回撤很小。

需要注意的是只跑主流币在更长时间的回测中是不如全币种的,回撤也更多。自己可以动手在小时线上回测以下,主要是因为币种少了资金分散,波动性反而上升。

Alpha = 0.001
price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA
trade_symbols = ['ETH','LTC','EOS','XRP','BCH']
price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1)
e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False)
trade_value = 1200
for row in price_usdt.iloc[-7500:].iterrows():
    e.Update(row[0], row[1])
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
        aim_value = -trade_value*round(diff/0.01,1)
        now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
        if aim_value - now_value > 0.5*trade_value:
            e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if aim_value - now_value < -0.5*trade_value:
            e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
stragey_2c = e
(stragey_2c.df['total']/e.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>

手续费和策略参数分析

由于前几个报告用的都是小时线,和实盘参数情况参数很大,现在有了分钟线,就可以看出来一些参数要如何设置,首先先看默认参数的设置:

  • Alpha = 0.03 指数移动平局的Alpha参数,设置的越大,基准价格跟踪越敏感,交易的越少,最终持仓也会越低,降低了杠杆,但会降低收益,降低最大回撤。
  • Update_base_price_time_interval = 30*60 多久更新一次基准价格, 单位秒,和Alpha参数相关,Alpha 设置的越小,这个间隔也可以设置的更小
  • Trade_value:山寨币价格(BTC计价)每偏离指数1%持有价值,需要根据自己投入的总资金和风险偏好决定,建议设置为总资金的3-10%。可通过研究环境的回测看杠杆的大小,Trade_value可以小于Adjust_value,如Adjust_value的一半,这样相当于偏离指数2%的持有价值。
  • Adjust_value: 合约价值(USDT计价)调整偏离值。 当 指数偏离 * Trade_value - 当前持仓 > Adjust_value,即目标持仓和当前持仓的差超过此值,就会开始交易。过大调整较慢,太小交易频繁,不能低于10,否则会达不到最小成交,推荐设置为Trade_value的40%以上。

Trade_value不必说,直接关系到我们的收益和风险,如果Trade_value一直没改过,到目前应该是盈利的。

Alpha由于我们这次有了更高频的数据,显然也要1min更新一次才更加合理,自然要比原来小,具体多少可以通过回测确定。

Adjust_value一直推荐Trade_value的40%以上,原来1hK线设置多少都影响不大,有些人希望调的很低,这样就可以更加紧密的贴近目标持仓,这里将会分析为什么不应该这样做。

首先分析手续费的问题

可以看到在默认费率0.00075的情况下,手续费293,利润为270,比例非常高。我们把手续费设为0,Adjust_value设置为10,看看会怎样。

stragey_2a.account['USDT']
{'fee': 293.85972778530453,
 'leverage': 0.45999999999999996,
 'margin': 236.23559736312995,
 'realised_profit': 281.77464608744435,
 'total': 10271.146238,
 'unrealised_profit': -10.628408369648495}
Alpha = 0.001
#price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #普通均线
price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA
trade_symbols = list(set(symbols))
price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1)
e = Exchange(trade_symbols,initial_balance=10000,commission=0,log=False)
trade_value = 300
for row in price_usdt.iloc[-7500:].iterrows():
    e.Update(row[0], row[1])
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
        aim_value = -trade_value*round(diff/0.01,1)
        now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
        if aim_value - now_value > 10:
            e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if aim_value - now_value < 10:
            e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
stragey_2d = e
(stragey_2d.df['total']/e.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>

结果是一条直线向上,BNB只是带来了一点小小的波折,较低的Adjust_value抓住了每一次波动,没有手续费利润极佳。

如果有手续费,Adjust_value很小会怎样?

Alpha = 0.001
#price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #普通均线
price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA
trade_symbols = list(set(symbols))
price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1)
e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False)
trade_value = 300
for row in price_usdt.iloc[-7500:].iterrows():
    e.Update(row[0], row[1])
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
        aim_value = -trade_value*round(diff/0.01,1)
        now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
        if aim_value - now_value > 10:
            e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if aim_value - now_value < 10:
            e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
stragey_2e = e
(stragey_2e.df['total']/e.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>

结果也走出了一条直线下跌的曲线,想想很容易理解,在很小的差价范围频繁调整,只会亏掉手续费。

综合来看,手续费水平越低,Adjust_value可以设置的越小,交易越频繁,利润越高。

Alpha设定的问题

既然有了分钟线,基准价格就要一分钟更新一次,这里我们简单回测确定下alpha的大小。目前推荐Alpha设置为0.001。

for Alpha in [0.0001, 0.0003, 0.0006, 0.001, 0.0015, 0.002, 0.004, 0.01, 0.02]:
#price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #普通均线
    price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA
    trade_symbols = list(set(symbols))
    price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1)
    e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False)
    trade_value = 300
    for row in price_usdt.iloc[-7500:].iterrows():
        e.Update(row[0], row[1])
        for symbol in trade_symbols:
            price = row[1][symbol]
            if np.isnan(price):
                continue
            diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
            aim_value = -trade_value*round(diff/0.01,1)
            now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
            if aim_value - now_value > 0.5*trade_value:
                e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
            if aim_value - now_value < -0.5*trade_value:
                e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
    print(Alpha, e.account['USDT']['unrealised_profit']+e.account['USDT']['realised_profit'])
0.0001 -77.80281760941007
0.0003 179.38803796199724
0.0006 218.12579924541367
0.001 271.1462377177959
0.0015 250.0014065973528
0.002 207.38692166891275
0.004 129.08021828803027
0.01 65.12410041648158
0.02 58.62356792410955

最近两月的分钟线回测结果

最后在看看长时间回测的结果。就在刚刚,一波此起彼伏的上涨,今日净值又新低,来给大家增强以下信心吧,由于分钟线的频率更高,将会在小时内开仓平仓,所以收益率会高很多。

还有一点,我们一直是固定的trade_value,这使得后期资金利用率不足,实际上的收益率还可以在增加很多。

在这两个月的回测时间内,我们处于什么位置哪?

<img src='https://www.fmz.com/upload/asset/274e19e6ca11dcbc289.jpg’>

Alpha = 0.001
#price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #普通均线
price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA
trade_symbols = list(set(symbols))
price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1)
e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False)
trade_value = 300
for row in price_usdt.iloc[:].iterrows():
    e.Update(row[0], row[1])
    for symbol in trade_symbols:
        price = row[1][symbol]
        if np.isnan(price):
            continue
        diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]]
        aim_value = -trade_value*round(diff/0.01,1)
        now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount'])
        if aim_value - now_value > 0.5*trade_value:
            e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
        if aim_value - now_value < -0.5*trade_value:
            e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2))
stragey_2f = e
(stragey_2f.df['total']/stragey_2e.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>
(stragey_2f.df['leverage']/stragey_2e.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>


Relacionados

Más.

¿Qué quieres decir?¿Puedo añadir WeChat? ¿Puedo añadir WeChat? ¿Puedo añadir WeChat?

excmTambién es muy arriesgado, y es muy fácil que las monedas pequeñas con valor de mercado salgan dos o tres veces a la vez.

el jingfengzGracias a Dios de la hierba.

¿Qué es esto?La máquina de imprimir, en realidad.

- ¿Qué quieres decir?La flexibilidad más

La Fuerza Aérea nunca será esclavo.El hombre de las calles

Las hierbasSí, el crecimiento de las monedas pequeñas es muy distorsionado y es el principal riesgo de la estrategia.