En la carga de los recursos... Cargando...

Estrategia de intercambio de tendencias

El autor:¿ Qué pasa?, Fecha: 2023-09-21 16:50:23
Las etiquetas:

Resumen general

Esta estrategia genera señales comerciales seleccionando indicadores de tendencia rápida y lenta y va largo cuando la tendencia rápida cruza la tendencia lenta, y va corto cuando la tendencia rápida cruza por debajo de la tendencia lenta.

Estrategia lógica

El núcleo de la estrategia es la selección y combinación de indicadores de tendencia rápida y lenta:

FastTrend = User selected fast trend indicator
SlowTrend = User selected slow trend indicator

La tendencia rápida incluye los algoritmos de tendencia SMA, EMA, KAMA y 20+.

Las señales comerciales se generan al juzgar la relación entre las tendencias rápidas y lentas:

if FastTrend > SlowTrend:
    Go long
if FastTrend < SlowTrend:
    Close position

La señal larga se activa cuando la tendencia rápida cruza la tendencia lenta. La señal corta se activa cuando la tendencia rápida cruza debajo de la tendencia lenta.

Análisis de ventajas

  • Incorpora más de 20 indicadores para combinaciones flexibles
  • Puede identificar tendencias en diferentes plazos
  • Los parámetros se pueden optimizar para encontrar la mejor combinación
  • Puede ir tanto largo como corto para capturar tendencias en ambas direcciones
  • El stop loss puede utilizarse para controlar el riesgo

Análisis de riesgos

  • La selección errónea de tendencias rápidas/lentas puede provocar el fracaso de la estrategia
  • Los indicadores de tendencia tienen retrasos, pueden perder los mejores puntos de entrada
  • Es propenso a generar señales falsas en mercados variados
  • Necesita optimización de parámetros para encontrar las mejores combinaciones de indicadores
  • Incapacidad para reducir rápidamente las pérdidas, riesgos de dejar correr las pérdidas

Direcciones de optimización

La estrategia puede mejorarse en los siguientes aspectos:

  1. Ajustar tendencias y parámetros rápidos/lentos para encontrar combinaciones óptimas.

  2. Agregue filtros como el volumen para evitar señales falsas durante la agitación del mercado.

  3. Incorporar estrategias de stop loss como la pérdida de stop trailing para controlar la pérdida de una sola operación.

  4. Combinar con otros indicadores como MACD, KDJ para mejorar la estabilidad.

  5. Optimice el tiempo de entrada, no confíe sólo en el cruce de tendencias.

Resumen de las actividades

La estrategia de cruce multi tendencia identifica los cambios de tendencia en los marcos de tiempo combinando tendencias rápidas y lentas. Pero es sensible a las fluctuaciones del mercado y solo funciona bien en mercados de tendencias obvias. Necesitamos métodos como la optimización de parámetros y la gestión de riesgos para mejorar la estabilidad y la rentabilidad de la estrategia.

[/trans] ¿Qué quieres decir?


/*backtest
start: 2023-08-21 00:00:00
end: 2023-09-20 00:00:00
period: 3h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// @version=5
// Author = TradeAutomation


strategy(title="Multi Trend Cross Strategy Template", shorttitle="Multi Trend Cross Strategy", process_orders_on_close=true, overlay=true, commission_type=strategy.commission.cash_per_contract, commission_value=0.0035, initial_capital = 1000000, default_qty_type=strategy.percent_of_equity, default_qty_value=100)


// Backtest Date Range Inputs // 
StartTime = input(defval=timestamp('01 Jan 2000 05:00 +0000'), group="Date Range", title='Start Time')
EndTime = input(defval=timestamp('01 Jan 2099 00:00 +0000'), group="Date Range", title='End Time')
InDateRange = true

// Trend Selector //
TrendSelectorInput = input.string(title="Fast Trend Selector", defval="EMA", group="Core Settings", options=["ALMA", "DEMA", "DSMA", "EMA", "HMA", "JMA", "KAMA", "Linear Regression (LSMA)", "RMA", "SMA", "SMMA", "Price Source", "TEMA", "TMA", "VAMA", "VIDYA", "VMA", "VWMA", "WMA", "WWMA", "ZLEMA"], tooltip="Select your fast trend")
TrendSelectorInput2 = input.string(title="Slow Trend Selector", defval="EMA", group="Core Settings", options=["ALMA", "DEMA", "DSMA", "EMA", "HMA", "JMA", "KAMA", "Linear Regression (LSMA)", "RMA", "SMA", "SMMA", "Price Source", "TEMA", "TMA", "VAMA", "VIDYA", "VMA", "VWMA", "WMA", "WWMA", "ZLEMA"], tooltip="Select your slow trend")
src = input.source(close, "Price Source", group="Core Settings", tooltip="This is the price source being used for the trends to calculate based on")
length = input.int(10, "Fast Trend Length", group="Core Settings", step=5, tooltip="A long is entered when the selected fast trend crosses over the selected slow trend")
length2 = input.int(200, "Slow Trend Length", group="Core Settings", step=5, tooltip="A long is entered when the selected fast trend crosses over the selected slow trend")
LineWidth = input.int(1, "Line Width", group="Core Settings", tooltip="This is the width of the line plotted that represents the selected trend")

// Individual Moving Average / Regression Setting //
AlmaOffset = input.float(0.85, "ALMA Offset", group="Individual Trend Settings", tooltip="This only applies when ALMA is selected")
AlmaSigma = input.float(6, "ALMA Sigma", group="Individual Trend Settings", tooltip="This only applies when ALMA is selected")
ATRFactor = input.float(3, "ATR Multiplier For SuperTrend", group="Individual Trend Settings", tooltip="This only applies when SuperTrend is selected")
ATRLength = input.int(12, "ATR Length For SuperTrend", group="Individual Trend Settings", tooltip="This only applies when SuperTrend is selected")
ssfLength = input.int(20, "DSMA Super Smoother Filter Length", minval=1, tooltip="This only applies when EDSMA is selected", group="Individual Trend Settings")
ssfPoles = input.int(2, "DSMA Super Smoother Filter Poles", options=[2, 3], tooltip="This only applies when EDSMA is selected", group="Individual Trend Settings")
JMApower = input.int(2, "JMA Power Parameter", group="Individual Trend Settings", tooltip="This only applies when JMA is selected")
phase = input.int(-45, title="JMA Phase Parameter", step=10, minval=-110, maxval=110, group="Individual Trend Settings", tooltip="This only applies when JMA is selected")
KamaAlpha = input.float(3, "KAMA's Alpha", minval=1,step=0.5, group="Individual Trend Settings", tooltip="This only applies when KAMA is selected")
LinRegOffset = input.int(0, "Linear Regression Offset", group="Individual Trend Settings", tooltip="This only applies when Linear Regression is selected")
VAMALookback =input.int(12, "VAMA Volatility lookback", group="Individual Trend Settings", tooltip="This only applies when VAMA is selected")


// Trend Indicators With Library Functions //
ALMA = ta.alma(src, length, AlmaOffset, AlmaSigma) 
EMA = ta.ema(src, length)
HMA = ta.hma(src, length)
LinReg = ta.linreg(src, length, LinRegOffset)
RMA = ta.rma(src, length)
SMA = ta.sma(src, length)
VWMA = ta.vwma(src, length)
WMA = ta.wma(src, length)

ALMA2 = ta.alma(src, length2, AlmaOffset, AlmaSigma) 
EMA2 = ta.ema(src, length2)
HMA2 = ta.hma(src, length2)
LinReg2 = ta.linreg(src, length2, LinRegOffset)
RMA2 = ta.rma(src, length2)
SMA2 = ta.sma(src, length2)
VWMA2 = ta.vwma(src, length2)
WMA2 = ta.wma(src, length2)

// Additional Trend Indicators Built In And/Or Open Sourced //
//DEMA
de1 = ta.ema(src, length)
de2 = ta.ema(de1, length)
DEMA = 2 * de1 - de2

de3 = ta.ema(src, length2)
de4 = ta.ema(de3, length2)
DEMA2 = 2 * de3 - de4

// Ehlers Deviation-Scaled Moving Average - DSMA [Everget]
PI = 2 * math.asin(1)
get2PoleSSF(src, length) =>
    arg = math.sqrt(2) * PI / length
    a1 = math.exp(-arg)
    b1 = 2 * a1 * math.cos(arg)
    c2 = b1
    c3 = -math.pow(a1, 2)
    c1 = 1 - c2 - c3
    var ssf = 0.0
    ssf := c1 * src + c2 * nz(ssf[1]) + c3 * nz(ssf[2])
get3PoleSSF(src, length) =>
    arg = PI / length
    a1 = math.exp(-arg)
    b1 = 2 * a1 * math.cos(1.738 * arg)
    c1 = math.pow(a1, 2)
    coef2 = b1 + c1
    coef3 = -(c1 + b1 * c1)
    coef4 = math.pow(c1, 2)
    coef1 = 1 - coef2 - coef3 - coef4
    var ssf = 0.0
    ssf := coef1 * src + coef2 * nz(ssf[1]) + coef3 * nz(ssf[2]) + coef4 * nz(ssf[3])
zeros = src - nz(src[2])
avgZeros = (zeros + zeros[1]) / 2
// Ehlers Super Smoother Filter 
ssf = ssfPoles == 2
     ? get2PoleSSF(avgZeros, ssfLength)
     : get3PoleSSF(avgZeros, ssfLength)
// Rescale filter in terms of Standard Deviations
stdev = ta.stdev(ssf, length)
scaledFilter = stdev != 0
     ? ssf / stdev
     : 0
alpha1 = 5 * math.abs(scaledFilter) / length
EDSMA = 0.0
EDSMA := alpha1 * src + (1 - alpha1) * nz(EDSMA[1])

get2PoleSSF2(src, length2) =>
    arg = math.sqrt(2) * PI / length2
    a1 = math.exp(-arg)
    b1 = 2 * a1 * math.cos(arg)
    c2 = b1
    c3 = -math.pow(a1, 2)
    c1 = 1 - c2 - c3
    var ssf2 = 0.0
    ssf2 := c1 * src + c2 * nz(ssf2[1]) + c3 * nz(ssf2[2])
get3PoleSSF2(src, length2) =>
    arg = PI / length2
    a1 = math.exp(-arg)
    b1 = 2 * a1 * math.cos(1.738 * arg)
    c1 = math.pow(a1, 2)
    coef2 = b1 + c1
    coef3 = -(c1 + b1 * c1)
    coef4 = math.pow(c1, 2)
    coef1 = 1 - coef2 - coef3 - coef4
    var ssf2 = 0.0
    ssf2 := coef1 * src + coef2 * nz(ssf2[1]) + coef3 * nz(ssf2[2]) + coef4 * nz(ssf2[3])
// Ehlers Super Smoother Filter 
ssf2 = ssfPoles == 2
     ? get2PoleSSF2(avgZeros, ssfLength)
     : get3PoleSSF2(avgZeros, ssfLength)
// Rescale filter in terms of Standard Deviations
stdev2 = ta.stdev(ssf2, length2)
scaledFilter2 = stdev2 != 0
     ? ssf2 / stdev2
     : 0
alpha12 = 5 * math.abs(scaledFilter2) / length2
EDSMA2 = 0.0
EDSMA2 := alpha12 * src + (1 - alpha12) * nz(EDSMA2[1])

//JMA [Everget]
phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2)
alpha = math.pow(beta, JMApower)
var JMA = 0.0
var e0 = 0.0
e0 := (1 - alpha) * src + alpha * nz(e0[1])
var e1 = 0.0
e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
var e2 = 0.0
e2 := (e0 + phaseRatio * e1 - nz(JMA[1])) * math.pow(1 - alpha, 2) + math.pow(alpha, 2) * nz(e2[1])
JMA := e2 + nz(JMA[1])

beta2 = 0.45 * (length2 - 1) / (0.45 * (length2 - 1) + 2)
alpha2 = math.pow(beta2, JMApower)
var JMA2 = 0.0
var e02 = 0.0
e02 := (1 - alpha2) * src + alpha2 * nz(e02[1])
var e12 = 0.0
e12 := (src - e02) * (1 - beta2) + beta2 * nz(e12[1])
var e22 = 0.0
e22 := (e02 + phaseRatio * e12 - nz(JMA2[1])) * math.pow(1 - alpha2, 2) + math.pow(alpha2, 2) * nz(e22[1])
JMA2 := e22 + nz(JMA2[1])

//KAMA [Everget]
var KAMA = 0.0
fastAlpha = 2.0 / (KamaAlpha + 1)
slowAlpha = 2.0 / 31
momentum = math.abs(ta.change(src, length))
volatility = math.sum(math.abs(ta.change(src)), length)
efficiencyRatio = volatility != 0 ? momentum / volatility : 0
smoothingConstant = math.pow((efficiencyRatio * (fastAlpha - slowAlpha)) + slowAlpha, 2)
KAMA := nz(KAMA[1], src) + smoothingConstant * (src - nz(KAMA[1], src))

var KAMA2 = 0.0
momentum2 = math.abs(ta.change(src, length2))
volatility2 = math.sum(math.abs(ta.change(src)), length2)
efficiencyRatio2 = volatility2 != 0 ? momentum2 / volatility2 : 0
smoothingConstant2 = math.pow((efficiencyRatio2 * (fastAlpha - slowAlpha)) + slowAlpha, 2)
KAMA2 := nz(KAMA2[1], src) + smoothingConstant2 * (src - nz(KAMA2[1], src))

//SMMA
var SMMA = 0.0
SMMA := na(SMMA[1]) ? ta.sma(src, length) : (SMMA[1] * (length - 1) + src) / length

var SMMA2 = 0.0
SMMA2 := na(SMMA2[1]) ? ta.sma(src, length2) : (SMMA2[1] * (length2 - 1) + src) / length2

//TEMA
t1 = ta.ema(src, length)
t2 = ta.ema(t1, length)
t3 = ta.ema(t2, length)
TEMA = 3 * (t1 - t2) + t3

t12 = ta.ema(src, length2)
t22 = ta.ema(t12, length2)
t32 = ta.ema(t22, length2)
TEMA2 = 3 * (t12 - t22) + t32

//TMA
TMA = ta.sma(ta.sma(src, math.ceil(length / 2)), math.floor(length / 2) + 1)

TMA2 = ta.sma(ta.sma(src, math.ceil(length2 / 2)), math.floor(length2 / 2) + 1)

//VAMA [Duyck]
mid=ta.ema(src,length)
dev=src-mid
vol_up=ta.highest(dev,VAMALookback)
vol_down=ta.lowest(dev,VAMALookback)
VAMA = mid+math.avg(vol_up,vol_down)

mid2=ta.ema(src,length2)
dev2=src-mid2
vol_up2=ta.highest(dev2,VAMALookback)
vol_down2=ta.lowest(dev2,VAMALookback)
VAMA2 = mid2+math.avg(vol_up2,vol_down2)

//VIDYA [KivancOzbilgic]
var VIDYA=0.0
VMAalpha=2/(length+1)
ud1=src>src[1] ? src-src[1] : 0
dd1=src<src[1] ? src[1]-src : 0
UD=math.sum(ud1,9)
DD=math.sum(dd1,9)
CMO=nz((UD-DD)/(UD+DD))
VIDYA := na(VIDYA[1]) ? ta.sma(src, length) : nz(VMAalpha*math.abs(CMO)*src)+(1-VMAalpha*math.abs(CMO))*nz(VIDYA[1])

var VIDYA2=0.0
VMAalpha2=2/(length2+1)
ud12=src>src[1] ? src-src[1] : 0
dd12=src<src[1] ? src[1]-src : 0
UD2=math.sum(ud12,9)
DD2=math.sum(dd12,9)
CMO2=nz((UD2-DD2)/(UD2+DD2))
VIDYA2 := na(VIDYA2[1]) ? ta.sma(src, length2) : nz(VMAalpha2*math.abs(CMO2)*src)+(1-VMAalpha2*math.abs(CMO2))*nz(VIDYA2[1])

//VMA [LazyBear]
sc = 1/length
pdm = math.max((src - src[1]), 0)
mdm = math.max((src[1] - src), 0)
var pdmS = 0.0
var mdmS = 0.0
pdmS := ((1 - sc)*nz(pdmS[1]) + sc*pdm)
mdmS := ((1 - sc)*nz(mdmS[1]) + sc*mdm)
s = pdmS + mdmS
pdi = pdmS/s
mdi = mdmS/s
var pdiS = 0.0
var mdiS = 0.0
pdiS := ((1 - sc)*nz(pdiS[1]) + sc*pdi)
mdiS := ((1 - sc)*nz(mdiS[1]) + sc*mdi)
d = math.abs(pdiS - mdiS)
s1 = pdiS + mdiS
var iS = 0.0
iS := ((1 - sc)*nz(iS[1]) + sc*d/s1)
hhv = ta.highest(iS, length) 
llv = ta.lowest(iS, length) 
d1 = hhv - llv
vi = (iS - llv)/d1
var VMA=0.0
VMA := na(VMA[1]) ? ta.sma(src, length) : sc*vi*src + (1 - sc*vi)*nz(VMA[1])

sc2 = 1/length2
pdm2 = math.max((src - src[1]), 0)
mdm2 = math.max((src[1] - src), 0)
var pdmS2 = 0.0
var mdmS2 = 0.0
pdmS2 := ((1 - sc2)*nz(pdmS2[1]) + sc2*pdm2)
mdmS2 := ((1 - sc2)*nz(mdmS2[1]) + sc2*mdm2)
s2 = pdmS2 + mdmS2
pdi2 = pdmS2/s2
mdi2 = mdmS2/s2
var pdiS2 = 0.0
var mdiS2 = 0.0
pdiS2 := ((1 - sc2)*nz(pdiS2[1]) + sc2*pdi2)
mdiS2 := ((1 - sc2)*nz(mdiS2[1]) + sc2*mdi2)
d2 = math.abs(pdiS2 - mdiS2)
s12 = pdiS2 + mdiS2
var iS2 = 0.0
iS2 := ((1 - sc2)*nz(iS2[1]) + sc2*d2/s12)
hhv2 = ta.highest(iS2, length) 
llv2 = ta.lowest(iS2, length) 
d12 = hhv2 - llv2
vi2 = (iS2 - llv2)/d12
var VMA2=0.0
VMA2 := na(VMA2[1]) ? ta.sma(src, length2) : sc2*vi2*src + (1 - sc2*vi2)*nz(VMA2[1])

//WWMA
var WWMA=0.0
WWMA := (1/length)*src + (1-(1/length))*nz(WWMA[1])

var WWMA2=0.0
WWMA2 := (1/length2)*src + (1-(1/length2))*nz(WWMA2[1])

//Zero Lag EMA [KivancOzbilgic]
EMA1a = ta.ema(src,length)
EMA2a = ta.ema(EMA1a,length)
Diff = EMA1a - EMA2a
ZLEMA = EMA1a + Diff

EMA12 = ta.ema(src,length2)
EMA22 = ta.ema(EMA12,length2)
Diff2 = EMA12 - EMA22
ZLEMA2 = EMA12 + Diff2

// Trend Mapping and Plotting //
FastTrend = TrendSelectorInput == "ALMA" ? ALMA : TrendSelectorInput == "DEMA" ? DEMA : TrendSelectorInput == "DSMA" ? EDSMA : TrendSelectorInput == "EMA" ? EMA : TrendSelectorInput == "HMA" ? HMA : TrendSelectorInput == "JMA" ? JMA : TrendSelectorInput == "KAMA" ? KAMA : TrendSelectorInput == "Linear Regression (LSMA)" ? LinReg : TrendSelectorInput == "RMA" ? RMA : TrendSelectorInput == "SMA" ? SMA : TrendSelectorInput == "SMMA" ? SMMA : TrendSelectorInput == "Price Source" ? src : TrendSelectorInput == "TEMA" ? TEMA : TrendSelectorInput == "TMA" ? TMA : TrendSelectorInput == "VAMA" ? VAMA : TrendSelectorInput == "VIDYA" ? VIDYA : TrendSelectorInput == "VMA" ? VMA : TrendSelectorInput == "VWMA" ? VWMA : TrendSelectorInput == "WMA" ? WMA : TrendSelectorInput == "WWMA" ? WWMA : TrendSelectorInput == "ZLEMA" ? ZLEMA : SMA
SlowTrend = TrendSelectorInput2 == "ALMA" ? ALMA2 : TrendSelectorInput2 == "DEMA" ? DEMA2 : TrendSelectorInput2 == "DSMA" ? EDSMA2 : TrendSelectorInput2 == "EMA" ? EMA2 : TrendSelectorInput2 == "HMA" ? HMA2 : TrendSelectorInput2 == "JMA" ? JMA2 : TrendSelectorInput2 == "KAMA" ? KAMA2 : TrendSelectorInput2 == "Linear Regression (LSMA)" ? LinReg2 : TrendSelectorInput2 == "RMA" ? RMA2 : TrendSelectorInput2 == "SMA" ? SMA2 : TrendSelectorInput2 == "SMMA" ? SMMA2 : TrendSelectorInput2 == "Price Source" ? src : TrendSelectorInput2 == "TEMA" ? TEMA2 : TrendSelectorInput2 == "TMA" ? TMA2 : TrendSelectorInput2 == "VAMA" ? VAMA2 : TrendSelectorInput2 == "VIDYA" ? VIDYA2 : TrendSelectorInput2 == "VMA" ? VMA2 : TrendSelectorInput2 == "VWMA" ? VWMA2 : TrendSelectorInput2 == "WMA" ? WMA2 : TrendSelectorInput2 == "WWMA" ? WWMA2 : TrendSelectorInput2 == "ZLEMA" ? ZLEMA2 : SMA2
plot(FastTrend, color=color.green, linewidth=LineWidth)
plot(SlowTrend, color=color.red, linewidth=LineWidth)

//Short & Long Options
Long = input.bool(true, "Model Long Trades", group="Core Settings")
Short = input.bool(false, "Model Short Trades", group="Core Settings")

// Entry & Exit Functions //
if (InDateRange and Long==true and FastTrend>SlowTrend)
    strategy.entry("Long", strategy.long, alert_message="Long")

if (InDateRange and Long==true and FastTrend<SlowTrend)
    strategy.close("Long", alert_message="Close Long")

if (InDateRange and Short==true and FastTrend<SlowTrend)
    strategy.entry("Short", strategy.short, alert_message="Short")

if (InDateRange and Short==true and FastTrend>SlowTrend)
    strategy.close("Short", alert_message="Cover Short")  

if (not InDateRange)
    strategy.close_all(alert_message="End of Date Range")
    

Más.