En la carga de los recursos... Cargando...

Estrategia clara de seguimiento de tendencias

El autor:¿ Qué pasa?, Fecha: 2023-09-28 16:07:12
Las etiquetas:

Resumen general

Esta estrategia combina múltiples indicadores técnicos para lograr un seguimiento claro de las tendencias.

  1. Juzgado de tendencias basado en medias móviles
  2. Análisis de sobreventa/supercompra mediante oscilador estocástico
  3. Análisis de los flujos de fondos con indicadores de precios y volumen
  4. Medición de la calidad de la tendencia utilizando el índice de volatilidad
  5. Detección de divergencias con RSI

Al sintetizar las señales de estos indicadores, la estrategia puede identificar tendencias con mayor precisión.

Principio

En primer lugar, las medias móviles y sus sobres se utilizan para determinar la dirección de la tendencia.

En segundo lugar, las líneas KD del oscilador estocástico se utilizan para detectar condiciones de sobreventa/supercompra, que suelen implicar oportunidades de reversión.

A continuación, se construyen indicadores de volumen de precios para analizar el flujo de fondos.

Para cuantificar la calidad de la tendencia, se construye un índice de volatilidad a partir del rango de precios promedio, y su EMA mide la fuerza de la tendencia.

Por último, las divergencias entre el precio y el RSI también pueden indicar inversiones de tendencia próximas.

Al combinar todas estas señales, se puede identificar la tendencia con mayor precisión. La estrategia será larga cuando aparezca una cruz dorada entre los MA, y será corta cuando ocurra una cruz muerta.

Ventajas

  • Reducción del ruido y señales más claras mediante múltiples indicadores
  • El análisis de sobreventa/supercompra proporciona un buen momento de reversión
  • El análisis de volumen previene las falsas rupturas
  • El índice de volatilidad mide la calidad de la tendencia para evitar la agitación
  • La divergencia del RSI ofrece una señal adicional de inversión
  • Estructura de código limpia, fácil de entender y modificar

Los riesgos

  • Los conflictos de señal pueden ocurrir cuando se combinan múltiples indicadores, lo que requiere un ajuste cuidadoso del parámetro
  • El aumento del volumen también podría ser manipulado, se necesita un juicio prudente
  • Los parámetros del RSI pueden necesitar ajustes para diferentes productos
  • Los golpes y las señales equivocadas a menudo ocurren durante los mercados de variación
  • El rendimiento de los indicadores puede deteriorarse en mercados ineficientes

Gestión de riesgos:

  • Mejorar la optimización de parámetros para el comportamiento adecuado de los indicadores
  • Configurar la ponderación de indicadores para resolver conflictos
  • Ajustar los parámetros en función de las características del producto
  • Aumentar el tamaño de las posiciones para reducir el comercio excesivo
  • Verificar el rendimiento mediante backtesting y comercio de papel

Optimizaciones

Esta estrategia puede mejorarse en los siguientes aspectos:

  1. Utilice el aprendizaje automático para ajustar automáticamente los parámetros de diferentes productos

  2. Añadir una evaluación del modelo para ajustar dinámicamente las ponderaciones de los indicadores en función de las condiciones del mercado

  3. Implementar un stop loss adaptativo basado en la volatilidad del mercado

  4. Incorporar aprendizaje profundo para una predicción de tendencias más precisa

  5. Construir la conciliación automática de señales para resolver conflictos y reducir las señales falsas

  6. Integrar más indicadores para la predicción del sistema de conjunto

  7. Explorar indicadores sin parámetros para reducir la dependencia de parámetros

Conclusión

Esta estrategia aprovecha múltiples indicadores técnicos para lograr una identificación de tendencias relativamente robusta, con un potencial de aplicación prometedor. Sin embargo, su precisión y gestión de riesgos requieren mejoras continuas antes de una negociación estable en vivo.


/*backtest
start: 2022-09-21 00:00:00
end: 2023-09-27 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=3
//Market Cipher Update 2 - updated 8th Oct 2019

//Momentum Curves with green and red dots
strategy(title="MarketCipher B", shorttitle="MarketCipher B")
n1 = input(9, "Channel Length")
n2 = input(12, "Average Length")
obLevel1 = input(60, "Over Bought Level 1")
obLevel2 = input(53, "Over Bought Level 2")
osLevel1 = input(-60, "Over Sold Level 1")
osLevel2 = input(-53, "Over Sold Level 2")
osLevel3 = input(-100, "Over Sold Level 2")

 
ap = hlc3 
esa = ema(ap, n1)
d = ema(abs(ap - esa), n1)
ci = (ap - esa) / (0.015 * d)
tci = ema(ci, n2)
 
wt1 = tci
wt2 = sma(wt1,3)

plot(0, color=gray, title="Zero Line")
plot(obLevel1, color=red, style=3, title="Bottom")
plot(osLevel1, color=green, style=3, title="Top")
plot(wt1, color=#BFE4FF, style=4, title= "Lt Blue Wave")
plot(wt2, color=#673ab7, style=4, title="Blue Wave", transp=40)
plot(wt1-wt2, color=yellow, style=4, transp=40, title="wave1-wave2")

//green dots and crosses
plotshape(crossover(wt1, wt2) and osLevel1 ? wt2 : na, title="Pos Crossover", location=location.absolute, style=shape.cross, size=size.tiny, color=#3FFF00, transp=20)
plotshape(crossover(wt2, wt1) and osLevel1 ? wt1 : na, title="Neg Crossover", location=location.absolute, style=shape.cross, size=size.tiny, color=red, transp=20)
plotshape(crossover(wt1, wt2) and wt2 < -59 ? wt2 : na, title="Pos Crossover", location=location.bottom, style=shape.circle, size=size.tiny, color=#3FFF00, transp=20)
plotshape(crossover(wt2, wt1) and wt1 > 59 ? wt2 : na, title="Neg Crossover", location=location.top, style=shape.circle, size=size.tiny, color=red, transp=20)

buy= crossover(wt1,wt2) // Define our buy/sell conditions, using pine inbuilt functions.
sell= crossover(wt2,wt1)
ordersize=floor(strategy.equity/close) // To dynamically calculate the order size as the account equity increases or decreases.
strategy.entry("long",strategy.long,ordersize,when=buy) // Buys when buy condition met
strategy.close("long", when = sell ) // Closes position when sell condition met
strategy.entry("short",strategy.short,ordersize,when=sell)
strategy.close("short",when = buy )

//soch RSI with divergences
smoothKw = input(3, minval=1)
smoothDw = input(3, minval=1)
lengthRSIw = input(14, minval=1)
lengthStochw = input(14, minval=1)
uselogw = input(true, title="Log")
srcInw = input(close,  title="Source")
showdivsw = input(true, title="Show Divergences")
showhiddenw = input(false, title="Show Hidden Divergences")
showchanw = input(false, title="Show Divergences Channel")


srcw = uselogw ? log(srcInw) : srcInw
rsi1w = rsi(srcw, lengthRSIw)
kkw = sma(stoch(rsi1w, rsi1w, rsi1w, lengthStochw), smoothKw)
dw = sma(kkw, smoothDw)
hmw = input(false, title="Use Average of both K & D")
kw = hmw ? avg(kkw, dw) : kkw

aw = plot(kkw, color=blue, linewidth=1, transp=0, title="K")
bw = plot(dw, color=orange, linewidth=1, transp=0, title="D")
fw = kkw >= dw ? blue : orange
fill(aw, bw, title="KD Fill", color=white)


//------------------------------
//@RicardoSantos' Divergence Script

f_top_fractal(_src)=>_src[4] < _src[2] and _src[3] < _src[2] and _src[2] > _src[1] and _src[2] > _src[0]
f_bot_fractal(_src)=>_src[4] > _src[2] and _src[3] > _src[2] and _src[2] < _src[1] and _src[2] < _src[0]
f_fractalize(_src)=>f_top_fractal(_src) ? 1 : f_bot_fractal(_src) ? -1 : 0
//-------------------------
fractal_top = f_fractalize(kw) > 0 ? kw[2] : na
fractal_bot = f_fractalize(kw) < 0 ? kw[2] : na

high_prev = valuewhen(fractal_top, kw[2], 0)[2]
high_price = valuewhen(fractal_top, high[2], 0)[2]
low_prev = valuewhen(fractal_bot, kw[2], 0)[2]
low_price = valuewhen(fractal_bot, low[2], 0)[2]

regular_bearish_diva = fractal_top and high[2] > high_price and kw[2] < high_prev
hidden_bearish_diva = fractal_top and high[2] < high_price and kw[2] > high_prev
regular_bullish_diva = fractal_bot and low[2] < low_price and kw[2] > low_prev
hidden_bullish_diva = fractal_bot and low[2] > low_price and kw[2] < low_prev
//-------------------------
plot(showchanw?fractal_top:na, title="Top Div Channel", offset=-2, color=gray)
plot(showchanw?fractal_bot:na, title="Bottom Div Channel", offset=-2, color=gray)

col1 = regular_bearish_diva ? red : hidden_bearish_diva and showhiddenw ? red : na
col2 = regular_bullish_diva ? green : hidden_bullish_diva and showhiddenw ? green : na
col3 = regular_bearish_diva ? red : hidden_bearish_diva and showhiddenw ? red : showchanw ? gray : na
col4 = regular_bullish_diva ? green : hidden_bullish_diva and showhiddenw ? green : showchanw ? gray : na

plot(title='H F', series=showdivsw and fractal_top ? kw[2] : na, color=col1, linewidth=2, offset=-2)
plot(title='L F', series=showdivsw and fractal_bot ? kw[2] : na, color=col2, linewidth=2, offset=-2)
plot(title='H D', series=showdivsw and fractal_top ? kw[2] : na, style=circles, color=col3, linewidth=3, offset=-2)
plot(title='L D', series=showdivsw and fractal_bot ? kw[2] : na, style=circles, color=col4, linewidth=3, offset=-2)

plotshape(title='+RBD', series=showdivsw and regular_bearish_diva ? kw[2] : na, text='R', style=shape.labeldown, location=location.absolute, color=red, textcolor=white, offset=-2)
plotshape(title='+HBD', series=showdivsw and hidden_bearish_diva and showhiddenw ? kw[2] : na, text='H', style=shape.labeldown, location=location.absolute, color=red, textcolor=white, offset=-2)
plotshape(title='-RBD', series=showdivsw and regular_bullish_diva ? kw[2] : na, text='R', style=shape.labelup, location=location.absolute, color=green, textcolor=white, offset=-2)
plotshape(title='-HBD', series=showdivsw and hidden_bullish_diva  and showhiddenw ? kw[2] : na, text='H', style=shape.labelup, location=location.absolute, color=green, textcolor=white, offset=-2)


//money flow
colorRed = #ff0000
colorGreen = #03ff00

ma(matype, src, length) =>
    if matype == "RMA"
        rma(src, length)
    else
        if matype == "SMA"
            sma(src, length)
        else
            if matype == "EMA"
                ema(src, length)
            else
                if matype == "WMA"
                    wma(src, length)
                else
                    if matype == "VWMA"
                        vwma(src, length)
                    else
                        src

rsiMFIperiod = input(60, "RSI+MFI Period")
rsiMFIMultiplier = input(190, "RSI+MFI Area multiplier")
MFRSIMA = input(defval="SMA", title="MFRSIMA", options=["RMA", "SMA", "EMA", "WMA", "VWMA"])

candleValue = (close - open) / (high - low)
MVC = ma(MFRSIMA, candleValue, rsiMFIperiod)
color_area = MVC > 0 ? green : red

RSIMFIplot = plot(MVC * rsiMFIMultiplier, title="RSI+MFI Area", color=color_area, transp=35)
fill(RSIMFIplot, plot(0), color_area, transp=50)

//rsi
//Bullish Divergence (green triangle)
//Hidden Bullish Divergence (green circle)
//Bearish Divergence (red triangle)
//Hidden Bearish Divergence (red circle)

lend = 14
bearish_div_rsi = input(60, "Min Bearish RSI",  minval=50, maxval=100)
bullish_div_rsi = input(40, "Max Bullish RSI",  minval=0, maxval=50)

// RSI code
rsi = rsi(close, lend)
plot(rsi,  color=#6DFFE1, linewidth=2, transp=0, title="RSI")

// DIVS code
xbars = 60
hb = abs(highestbars(rsi, xbars)) // Finds bar with highest value in last X bars
lb = abs(lowestbars(rsi, xbars)) // Finds bar with lowest value in last X bars

// Defining variable values, mandatory in Pine 3
max = na
max_rsi = na
min = na
min_rsi = na
bearish_div = na
bullish_div = na
hidden_bearish_div = na
hidden_bullish_div = na
div_alert = na
hidden_div_alert = na

// If bar with lowest / highest is current bar, use it's value
max := hb == 0 ? close : na(max[1]) ? close : max[1]
max_rsi := hb == 0 ? rsi : na(max_rsi[1]) ? rsi : max_rsi[1]
min := lb == 0 ? close : na(min[1]) ? close : min[1]
min_rsi := lb == 0 ? rsi : na(min_rsi[1]) ? rsi : min_rsi[1]

// Compare high of current bar being examined with previous bar's high
// If curr bar high is higher than the max bar high in the lookback window range
if close > max // we have a new high
    max := close // change variable "max" to use current bar's high value
if rsi > max_rsi // we have a new high
    max_rsi := rsi // change variable "max_rsi" to use current bar's RSI value
if close < min // we have a new low
    min := close // change variable "min" to use current bar's low value
if rsi < min_rsi // we have a new low
    min_rsi := rsi // change variable "min_rsi" to use current bar's RSI value

// Detects divergences between price and indicator with 1 candle delay so it filters out repeating divergences
if (max[1] > max[2]) and (rsi[1] < max_rsi) and (rsi <= rsi[1]) and (rsi[1] >= bearish_div_rsi)
    bearish_div := true
	div_alert := true
if (min[1] < min[2]) and (rsi[1] > min_rsi) and (rsi >= rsi[1]) and (rsi[1] <= bullish_div_rsi)
    bullish_div := true
	div_alert := true
// Hidden divergences
if (max[1] < max[2]) and (rsi[1] < max_rsi)
	hidden_bearish_div := true
	hidden_div_alert := true
if (min[1] > min[2]) and (rsi[1] > min_rsi)
	hidden_bullish_div := true
	hidden_div_alert := true
// Alerts
alertcondition(div_alert, title='RSI Divergence', message='RSI Divergence')
alertcondition(hidden_div_alert, title='Hidden RSI Divergence', message='Hidden RSI Divergence')

// Plots divergences with offest
plotshape((bearish_div ? rsi[1] + 3 : na), location=location.absolute, style=shape.diamond, color=#ff0000, size=size.tiny, transp=0, offset=0, title="RSI Bear Div")
plotshape((bullish_div ? rsi[1] - 3 : na), location=location.absolute, style=shape.diamond, color=#00ff01, size=size.tiny, transp=0, offset=0, title="RSI Bull Div")
plotshape((hidden_bearish_div ? rsi[1] + 3 : na), location=location.absolute, style=shape.circle, color=#ff0000, size=size.tiny, transp=0, offset=0, title="RSI Bear hDiv")
plotshape((hidden_bullish_div ? rsi[1] - 3 : na), location=location.absolute, style=shape.circle, color=#00ff01, size=size.tiny, transp=0, offset=0, title="RSI Bull hDiv")


//wave divergences
WTCross = cross(wt1, wt2)
WTCrossUp = wt2 - wt1 <= 0
WTCrossDown = wt2 - wt1 >= 0
WTFractal_top = f_fractalize(wt1) > 0 and wt1[2] ? wt1[2] : na
WTFractal_bot = f_fractalize(wt1) < 0 and wt1[2] ? wt1[2] : na

WTHigh_prev  = valuewhen(WTFractal_top, wt1[2], 0)[2]
WTHigh_price = valuewhen(WTFractal_top, high[2], 0)[2]
WTLow_prev  = valuewhen(WTFractal_bot, wt1, 0)[2]
WTLow_price  = valuewhen(WTFractal_bot, low[2], 0)[2]

WTRegular_bearish_div = WTFractal_top and high[2] > WTHigh_price and wt1[2] < WTHigh_prev
WTRegular_bullish_div = WTFractal_bot and low[2] < WTLow_price and wt1[2] > WTLow_prev

bearWTSignal = WTRegular_bearish_div and WTCrossDown
bullWTSignal = WTRegular_bullish_div and WTCrossUp

WTCol1 = bearWTSignal ? #ff0000 : na
WTCol2 = bullWTSignal ? #00FF00EB : na

plot(series = WTFractal_top ? wt1[2] : na, title='Bearish Divergence', color=WTCol1, linewidth=5, transp=60)
plot(series = WTFractal_bot ? wt1[2] : na, title='Bullish Divergence', color=WTCol2, linewidth=5, transp=60)


//2nd wave
WTFractal_topa = f_fractalize(wt2) > 0 and wt2[2] ? wt2[2] : na
WTFractal_bota = f_fractalize(wt2) < 0 and wt2[2] ? wt2[2] : na

WTHigh_preva  = valuewhen(WTFractal_topa, wt2[2], 0)[2]
WTHigh_pricea = valuewhen(WTFractal_topa, high[2], 0)[2]
WTLow_preva  = valuewhen(WTFractal_bota, wt2, 0)[2]
WTLow_pricea  = valuewhen(WTFractal_bota, low[2], 0)[2]


WTRegular_bearish_diva = WTFractal_topa and high[2] > WTHigh_pricea and wt2[2] < WTHigh_preva
WTRegular_bullish_diva = WTFractal_bota and low[2] < WTLow_pricea and wt2[2] > WTLow_preva

bearWTSignala = WTRegular_bearish_diva and WTCrossDown
bullWTSignala = WTRegular_bullish_diva and WTCrossUp

WTCol1a = bearWTSignala ? #ff0000 : na
WTCol2a = bullWTSignala ? #00FF00EB : na

plot(series = WTFractal_topa ? wt2[2] : na, title='Bearish Divergence', color=WTCol1a, linewidth=5, transp=60)
plot(series = WTFractal_bota ? wt2[2] : na, title='Bullish Divergence', color=WTCol2a, linewidth=5, transp=60)


Más.