En la carga de los recursos... Cargando...

Dinámica de costo promedio de dólar de costo promedio estrategia compuesta

El autor:¿ Qué pasa?, Fecha: 2024-01-04 16:34:10
Las etiquetas:

img

Resumen general

La estrategia compuesta de DCA de costo promedio dinámico ajusta dinámicamente la cantidad de cada posición de apertura. Al comienzo de la tendencia, primero abre pequeñas posiciones para construir una posición. A medida que aumenta la profundidad de la consolidación, aumenta gradualmente el tamaño de la posición. La estrategia utiliza funciones exponenciales para calcular los niveles de precio de stop loss, y vuelve a abrir nuevos lotes cuando se activa, lo que puede hacer que el costo de mantener posiciones continúe disminuyendo exponencialmente. A medida que aumenta la profundidad, el costo de las posiciones puede reducirse gradualmente. Cuando el precio se invierte, la toma de ganancias por lote permite mayores retornos.

Estrategia lógica

Esta estrategia utiliza una combinación simple de señales de sobreventa del RSI y el tiempo de las medias móviles para determinar las oportunidades de entrada. Una primera orden de entrada se envía cuando el RSI cae por debajo del nivel de sobreventa y el precio cierra por debajo del promedio móvil. Después de la primera entrada, la función exponencial calcula el porcentaje de caída de precios para los próximos niveles. Cada vez que activa una orden DCA, el tamaño de la posición se recalcula para mantener la misma cantidad por entrada.

A medida que aumenta el recuento de DCA, el costo promedio de tenencia continúa disminuyendo. Solo un pequeño rebote es suficiente para obtener ganancias de cada posición. Después de las entradas continuas presentadas, se traza una línea de stop loss por encima del precio promedio de tenencia. Una vez que el precio se rompe por encima del precio promedio y la línea de stop loss, todas las posiciones se cierran.

La mayor ventaja es que a medida que el costo de tenencia continúa disminuyendo, incluso durante la consolidación, el costo aún puede reducirse de manera acumulativa paso a paso.

Riesgos y defectos

El riesgo más grande es el tamaño de la posición limitada inicialmente. Durante la disminución continua, puede haber un riesgo de stop loss. Por lo tanto, el porcentaje de stop loss debe establecerse razonablemente basado en el apetito personal de riesgo.

Además, el nivel de stop loss tiene dos extremos. Si es demasiado flojo, no se puede capturar suficiente retracement. Pero si es demasiado apretado, aumenta la probabilidad de que se detenga durante las correcciones a medio plazo. Por lo tanto, es crucial elegir los niveles de stop loss adecuados de acuerdo con las diferentes condiciones del mercado y la preferencia de riesgo.

Si hay demasiados niveles de DCA, cuando el precio aumenta sustancialmente, el costo de tenencia extremadamente alto puede impedir una parada de pérdida efectiva.

Sugerencias para optimizar

  1. Optimizar las señales de tiempo de entrada, probando parámetros y otras combinaciones de indicadores para señales de mayor tasa de ganancia.

  2. Optimizar los mecanismos de stop loss, probando Λ trailing stop loss o trailing stop loss ajustado a la curva para obtener mejores resultados.

  3. Se pueden examinar diferentes tipos de ganancias de retraso para obtener mejores oportunidades de salida y un mayor rendimiento total.

  4. Se puede añadir un rango para evitar reingresos agresivos justo después de las paradas.

Conclusión

Esta estrategia utiliza el RSI para determinar entradas, el mecanismo DCA dinámico exponencial para ajustar dinámicamente el tamaño de la posición y los costos promedio, con el fin de obtener ventaja de precio durante las consolidaciones. Las áreas de optimización principales se centran en las señales de entrada / salida, stop loss y take profit. El concepto central del DCA exponencial se implementa para cambiar el costo de tenencia a un nivel más bajo continuamente, proporcionando así más espacio durante las consolidaciones y logrando rendimientos multiplicados cuando surge una tendencia.


/*backtest
start: 2023-12-04 00:00:00
end: 2024-01-03 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0///
// © A3Sh
//@version=5

// Study of a Simple RSI based, PA (priceaveraging) and DCA strategy that opens a new position everytime it hits a specified price level below the first entry.
// The first entry is opened when the specified rsi and moving average conditions are met. 
// The following DCA levels are calculated exponentially and set, starting with a specified % of price drop. 
// The disctance between the dca levels can be changed with the exponential scale.
// Each position closes individually when it reaches a specified take profit.
// The position can re-open again when it hits the price level again.
// Each time a position is closed and reopened, the average price drops a little.
// The position stays open until the first entry closes or when the price reaches the Stop level.
// When the price reaches the Stop level, all positions will close at once.

// The RSI and MA code for opening the entry is adapted from the Optimized RSI Buy the Dips strategy, by Coinrule.
// This code is used for study purposes, but any other low/ dip finding indicator can be used.
// https://www.tradingview.com/script/Pm1WAtyI-Optimized-RSI-Strategy-Buy-The-Dips-by-Coinrule/

// Dynamic DCA layers are inspired by the Backtesting 3commas DCA Bot v2, by rouxam
// This logic gives more flexibility because you can dyanically change the amount of dca entries.
// https://www.tradingview.com/script/8d6Auyst-Backtesting-3commas-DCA-Bot-v2/

// The use of for loops to (re)open and close different entries separately is based on the Simple_Pyramiding strategy.
// https://www.tradingview.com/script/t6cNLqDN-Simple-Pyramiding/


strategy('Simple_RSI+PA+DCA', overlay=true, pyramiding=20, initial_capital=500, calc_on_order_fills=true, default_qty_type=strategy.percent_of_equity, commission_type=strategy.commission.percent, commission_value=0.075, close_entries_rule='FIFO')

// Backtest Window //
start_time   = input(defval=timestamp("01 April 2021 20:00"), group = "Backtest Window", title="Start Time")
end_time     = input(defval=timestamp("01 Aug 2030 20:00"),   group = "Backtest Window", title="End Time")
window() => true

// Inputs //
takeProfit      = input.float  (3,           group = 'Risk',           title = 'Take Profit %', step=0.1)
takeProfitAll   = input.float  (6,           group = "Risk",           title = 'Close All %',   step=0.1)
posCount        = input.int    (8,           group = 'DCA Settings',   title = 'Max Amount of Entries')
increment       = input.float  (2,           group = 'DCA Settings',   title = 'Price Drop % to open First DCA Order', step=0.5)/100 
exponent_scale  = input.float  (1.4,         group = 'DCA Settings',   title = 'Exponential Scale DCA levels', step=0.1, minval=1.1) 
bar_lookback    = input.int    (4999,        group = 'DCA Settings',   title = 'Lines Bar Lookback', maxval = 4999)
plotMA          = input.bool   (false,       group = 'Moving Average', title = 'Plot Moving Average')
moving_average  = input.int    (100,         group = 'Moving Average', title = 'MA Length' )
rsiLengthInput  = input.int    (14,          group = 'RSI Settings',   title = "RSI Length", minval=1)
rsiSourceInput  = input.source (close,       group = 'RSI Settings',   title = 'Source')
overSold        = input.int    (29,          group = 'RSI Settings',   title = 'Oversold, Trigger to Enter First Position')

// variables //
var open_position    = true   // true when there are open positions
var entry_price      = 0.0    // the entry price of the first entry
var dca_price        = 0.0    // the price of the different dca layers
var int count        = 0      // bar counter since first open position
var int max_bar      = 0      // max bar buffer variable for DCA lines, stop lines, average price
var line dca_line    = na     // lines variable for creating dca lines

// arrays //
linesArray = array.new_float(posCount,na)  // array to store different dca price levels for creating the dca lines

// Create max bar buffer for DCA lines, Stop and average price lines //
max_bar := count >= bar_lookback ? bar_lookback : count

// Order size based on first entry and amount of DCA layers
q = (strategy.equity  / posCount + 1) / open


// Calculate Moving Averages
movingaverage_signal = ta.sma(close ,moving_average)
plot (plotMA ? movingaverage_signal : na, color = color.new(#f5ff35, 0))


// RSI calculations //
up   = ta.rma(math.max(ta.change(rsiSourceInput), 0), rsiLengthInput)
down = ta.rma(-math.min(ta.change(rsiSourceInput), 0), rsiLengthInput)
rsi  = down == 0 ? 100 : up == 0 ? 0 : 100 - (100 / (1 + up / down))


// Buy Signal (co)
co = ta.crossover(rsi, overSold) and close < movingaverage_signal


// Create a white line for average price, since the last opened position //
// average_price = line.new(x1 = bar_index - max_bar, y1 = strategy.position_avg_price, x2 = bar_index, y2 = strategy.position_avg_price, color = color.white)
    

// Stop //
// Create a red Stop level line based on a specified % above the average price //
stop_level = strategy.position_avg_price + (strategy.position_avg_price / 100 * takeProfitAll)
// stop_line  = line.new(x1 = bar_index - max_bar, y1 = stop_level, x2 = bar_index, y2 = stop_level, color = color.red)
    

// Take profit definition per open position //
take_profit_price = close * takeProfit / 100 / syminfo.mintick


// Make sure the Stop level and average price level don't excied the bar buffer to avoid errors //
// if count <= bar_lookback
//     line.set_x1(stop_line,     strategy.opentrades.entry_bar_index(strategy.opentrades - 1))
//     line.set_x1(average_price, strategy.opentrades.entry_bar_index(strategy.opentrades - 1))


// Exponential DCA Layer Calculation fucntion --> First try, needs more experimentation //
dca_price_level(index,entry_price) =>   
    entry_price * (1 - (increment * math.pow(exponent_scale, index)))


// Set  Entries //
// Open the first entry and set the entry price //
if co and strategy.position_size == 0 and window() 
    open_position := true
    entry_price   := close
    strategy.entry(id = 'FE1', direction = strategy.long, qty = q)  
    
// first_entry_line = line.new(x1 = bar_index - max_bar, y1 = entry_price, x2 = bar_index, y2 = entry_price, color = color.blue)


// Start bar counting since the position is open //
if open_position == true
    count := count + 1


// Set the DCA entries //
// Prices below 1 are not set to avoid negative prices //
if strategy.position_size > 0 and window()
    for i = 0 to strategy.opentrades
        if strategy.opentrades == i and i < posCount
            dca_price := dca_price_level(i,entry_price) > 1 ? dca_price_level(i,entry_price) : na
            entry_id = 'DCA' + str.tostring(i + 1) 
            strategy.entry(id = entry_id, direction = strategy.long, limit = dca_price, qty = q)  


// Store the values of the different dca price levels in an array and create the dca lines // 
// Prices below 1 are not stored//
if open_position==true and window() 
    for i = 1 to posCount -1
        array.push(linesArray, dca_price_level(i,entry_price) > 1 ? dca_price_level(i,entry_price) : na) 
    
    // for i = 1 to array.size(linesArray) - 1
    //     dca_line := line.new(x1 = bar_index - max_bar, y1 = array.get(linesArray, i), x2 = bar_index, y2 = array.get(linesArray, i),color = color.blue)


// Create thick line to show the last Entry price //
// last_entry_price = line.new(x1 = bar_index[5], y1 = strategy.opentrades.entry_price(strategy.opentrades - 1), x2 = bar_index, y2 = strategy.opentrades.entry_price(strategy.opentrades - 1),color = color.rgb(255, 0, 204), width = 5)


// Exit the first entry when the take profit triggered //   
if strategy.opentrades > 0 and window() 
    strategy.exit(id = 'Exit FE', from_entry = 'FE1', profit = take_profit_price)


// Exit DCA entries when take profit is triggered //
if strategy.opentrades > 0 and window() 
    for i = 0 to strategy.opentrades 
        exit_from = 'DCA' + str.tostring(i + 1)
        exit_id = 'Exit_' + str.tostring(i + 1)
        strategy.exit(id = exit_id, from_entry = exit_from, profit = take_profit_price)


// Close all positions at once when Stop is crossed //
if strategy.opentrades > 0 and ta.crossover(close,stop_level) and window() 
    strategy.close_all()


// Make sure nothing is open after alle positions are closed and set the condiftion back to be open for new entries //
if strategy.position_size[1] > 0 and strategy.position_size == 0
    strategy.cancel_all()
    strategy.close_all()
    // line.delete(average_price)
    // line.delete(stop_line)
    // line.delete(dca_line)
    open_position := false   // All position are closed, so back to false
    count := 0               // Reset bar counter




Más.