Les ressources ont été chargées... Je charge...

Une stratégie d'équilibre perpétuel adaptée à la baisse du marché baissier

Auteur:FMZ~Lydia, Créé: 2022-08-16 09:22:14, Mis à jour: 2024-12-02 21:44:18

A perpetual balance strategy suitable for bear market bottoming

Dans le passé, FMZ a officiellement publié une stratégie de grille perpétuelle, qui était populaire parmi les utilisateurs, et les spectateurs qui ont négocié TRX dans de vrais robots ont gagné beaucoup de profits au cours de l'année écoulée avec des risques contrôlables. 1. Il est nécessaire de définir des paramètres tels que le prix initial, l'espacement de la grille, la valeur de la grille, le mode long-courte, etc. Les paramètres sont encombrants et ont un grand impact sur les bénéfices, ce qui rend difficile la définition pour les novices. 2. La stratégie du réseau perpétuel présente un risque élevé de vente à découvert, tandis que le risque de vente à long terme est relativement faible. La grille de contrats perpétuels peut choisir d'aller seulement long pour éviter le risque de shorting, cela semble bien pour le moment. Cependant, il doit faire face au problème que le prix actuel dépasse le prix initial, ce qui entraîne une position courte, et le prix initial doit être réinitialisé.

J'ai écrit un article sur le principe de la stratégie d'équilibre et la comparaison avec la stratégie de réseau avant, et vous pouvez toujours le consulter maintenant:https://www.fmz.com/digest-topic/9294. La stratégie de solde détient toujours des positions avec un ratio de valeur fixe ou une valeur, vend une partie quand elle augmente et achète quand elle baisse. Elle peut être exécutée avec des paramètres simples. Même si le prix de la devise augmente beaucoup, il n'y a pas de risque de court-circuit. Le problème avec la stratégie de solde au comptant est que l'utilisation du capital est faible et qu'il n'y a pas de moyen facile d'augmenter l'effet de levier. Et les contrats perpétuels peuvent résoudre le problème. Si le capital total est de 1000, 2000 peut être détenu de manière fixe, ce qui dépasse le capital initial et améliore l'utilisation du capital. Un autre paramètre est le ratio d'ajustement, qui contrôle la quantité à injecter ou à déposer la position. S'il est défini à 0,01, cela signifie que la position est déposée une fois pour une augmentation de 1% et réduite une fois pour une diminution de 1%.

Pour les débutants, la stratégie d'équilibre est fortement recommandée. L'opération est simple, il suffit de définir un paramètre de ratio de détention ou de valeur de position, et vous pouvez l'exécuter sans réfléchir sans vous soucier des augmentations constantes des prix. Ceux qui ont une certaine expérience peuvent choisir la stratégie de grille, et décider des limites supérieures et inférieures des fluctuations et des fonds par grille, afin d'améliorer l'utilisation des fonds et d'obtenir des bénéfices maximaux.

Afin de faciliter le backtesting de plus de paires de négociation, ce document montrera le processus complet de backtesting, et les utilisateurs peuvent ajuster différents paramètres et paires de négociation pour la comparaison. (La version est Python3, et un agent est nécessaire pour télécharger le devis. Les utilisateurs peuvent télécharger Anancoda3 par eux-mêmes ou l'exécuter via Googles colab)

import requests
from datetime import date,datetime
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import requests, zipfile, io
%matplotlib inline
## Current trading pairs
Info = requests.get('https://fapi.binance.com/fapi/v1/exchangeInfo')
symbols = [s['symbol'] for s in Info.json()['symbols']]
symbols = list(set(filter(lambda x: x[-4:] == 'USDT', [s.split('_')[0] for s in symbols]))-
                 set(['1000SHIBUSDT','1000XECUSDT','BTCDOMUSDT','DEFIUSDT','BTCSTUSDT'])) + ['SHIBUSDT','XECUSDT']
print(symbols)
['FLMUSDT', 'ICPUSDT', 'CHZUSDT', 'APEUSDT', 'DARUSDT', 'TLMUSDT', 'ETHUSDT', 'STMXUSDT', 'ENJUSDT', 'LINKUSDT', 'OGNUSDT', 'RSRUSDT', 'QTUMUSDT', 'UNIUSDT', 'BNBUSDT', 'XLMUSDT', 'ATOMUSDT', 'LPTUSDT', 'UNFIUSDT', 'DASHUSDT', 'BTCUSDT', 'NEOUSDT', 'AAVEUSDT', 'DUSKUSDT', 'XRPUSDT', 'IOTXUSDT', 'CVCUSDT', 'SANDUSDT', 'XTZUSDT', 'IOTAUSDT', 'BELUSDT', 'MANAUSDT', 'IOSTUSDT', 'IMXUSDT', 'THETAUSDT', 'SCUSDT', 'DOGEUSDT', 'CELOUSDT', 'BNXUSDT', 'SNXUSDT', 'ZRXUSDT', 'HBARUSDT', 'DOTUSDT', 'ANKRUSDT', 'CELRUSDT', 'BAKEUSDT', 'GALUSDT', 'ICXUSDT', 'LRCUSDT', 'AVAXUSDT', 'C98USDT', 'MTLUSDT', 'FTTUSDT', 'MASKUSDT', 'RLCUSDT', 'MATICUSDT', 'COMPUSDT', 'BLZUSDT', 'CRVUSDT', 'ZECUSDT', 'RUNEUSDT', 'LITUSDT', 'ONEUSDT', 'ADAUSDT', 'NKNUSDT', 'LTCUSDT', 'ATAUSDT', 'GALAUSDT', 'BALUSDT', 'ROSEUSDT', 'EOSUSDT', 'YFIUSDT', 'SKLUSDT', 'BANDUSDT', 'ALGOUSDT', 'NEARUSDT', 'AXSUSDT', 'KSMUSDT', 'AUDIOUSDT', 'SRMUSDT', 'HNTUSDT', 'MKRUSDT', 'KLAYUSDT', 'FLOWUSDT', 'STORJUSDT', 'BCHUSDT', 'DYDXUSDT', 'ARUSDT', 'GMTUSDT', 'CHRUSDT', 'API3USDT', 'VETUSDT', 'KAVAUSDT', 'WAVESUSDT', 'EGLDUSDT', 'SFPUSDT', 'RENUSDT', 'SUSHIUSDT', 'SOLUSDT', 'RVNUSDT', 'ONTUSDT', 'BTSUSDT', 'ZILUSDT', 'GTCUSDT', 'ZENUSDT', 'ALICEUSDT', 'ETCUSDT', 'TRXUSDT', 'TOMOUSDT', 'FILUSDT', 'ARPAUSDT', 'CTKUSDT', 'BATUSDT', 'SXPUSDT', '1INCHUSDT', 'HOTUSDT', 'WOOUSDT', 'LINAUSDT', 'REEFUSDT', 'GRTUSDT', 'RAYUSDT', 'COTIUSDT', 'XMRUSDT', 'PEOPLEUSDT', 'OCEANUSDT', 'JASMYUSDT', 'TRBUSDT', 'ANTUSDT', 'XEMUSDT', 'DGBUSDT', 'ENSUSDT', 'OMGUSDT', 'ALPHAUSDT', 'FTMUSDT', 'DENTUSDT', 'KNCUSDT', 'CTSIUSDT', 'SHIBUSDT', 'XECUSDT']
#Get the function of the K-line of any period
def GetKlines(symbol='BTCUSDT',start='2020-8-10',end='2021-8-10',period='1h',base='fapi',v = 'v1'):
    Klines = []
    start_time = int(time.mktime(datetime.strptime(start, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000
    end_time =  min(int(time.mktime(datetime.strptime(end, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000,time.time()*1000)
    intervel_map = {'m':60*1000,'h':60*60*1000,'d':24*60*60*1000}
    while start_time < end_time:
        mid_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
        url = 'https://'+base+'.binance.com/'+base+'/'+v+'/klines?symbol=%s&interval=%s&startTime=%s&endTime=%s&limit=1000'%(symbol,period,start_time,mid_time)
        #print(url)
        res = requests.get(url)
        res_list = res.json()
        if type(res_list) == list and len(res_list) > 0:
            start_time = res_list[-1][0]+int(period[:-1])*intervel_map[period[-1]]
            Klines += res_list
        if type(res_list) == list and len(res_list) == 0:
            start_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
        if mid_time >= end_time:
            break

    df = pd.DataFrame(Klines,columns=['time','open','high','low','close','amount','end_time','volume','count','buy_amount','buy_volume','null']).astype('float')
    df.index = pd.to_datetime(df.time,unit='ms')
    return df

En téléchargeant les prix de clôture de toutes les paires de négociation de 2021 à nos jours, nous pouvons observer les changements de l'indice global du marché: de 2021 à 2022, c'est sans aucun doute un marché haussier, et l'indice a une fois augmenté de 14 fois. On peut dire que l'or est partout, et de nombreuses devises ont augmenté des centaines de fois. Cependant, en 2022, le marché baissier qui a duré pendant un demi-année a commencé, avec l'indice plongeant de 80%, et des dizaines de devises se sont retirées de plus de 90%. L'indice se situe actuellement autour de 3, ce qui représente toujours un gain de 200% par rapport au début de 2021, et il devrait être un bas relatif pour le moment, compte tenu de l'évolution du marché.

Monnaies dont le prix le plus élevé a augmenté de plus de 10 fois depuis le début de l'année:

Résumé: Le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards d'euros, le prix du pétrole américain est de 10,9 milliards

Monnaies dont le tirage actuel est supérieur à 80% par rapport au point le plus élevé:

C'est le cas notamment de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de la marque de

#Download closing prices for all trading pairs
start_date = '2021-1-1'
end_date = '2022-05-30'
period = '1d'
df_all = pd.DataFrame(index=pd.date_range(start=start_date, end=end_date, freq=period),columns=symbols)
for i in range(len(symbols)):
    #print(symbols[i])
    symbol = symbols[i]
    df_s = GetKlines(symbol=symbol,start=start_date,end=end_date,period=period,base='api',v='v3')
    df_all[symbol] = df_s[~df_s.index.duplicated(keep='first')].close
#Index changes
df_norm = df_all/df_all.fillna(method='bfill').iloc[0] #Normalization
df_norm.mean(axis=1).plot(figsize=(15,6),grid=True);

png

#The highest increase over the beginning of the year
max_up = df_all.max()/df_all.fillna(method='bfill').iloc[0]
print(max_up.map(lambda x:round(x,3)).sort_values().to_dict())
{'JASMYUSDT': 1.0, 'ICPUSDT': 1.0, 'LINAUSDT': 1.0, 'WOOUSDT': 1.0, 'GALUSDT': 1.0, 'PEOPLEUSDT': 1.0, 'XECUSDT': 1.026, 'ENSUSDT': 1.032, 'TLMUSDT': 1.039, 'IMXUSDT': 1.099, 'FLOWUSDT': 1.155, 'ATAUSDT': 1.216, 'DARUSDT': 1.261, 'ALICEUSDT': 1.312, 'BNXUSDT': 1.522, 'API3USDT': 1.732, 'GTCUSDT': 1.833, 'KLAYUSDT': 1.891, 'BAKEUSDT': 1.892, 'DYDXUSDT': 2.062, 'SHIBUSDT': 2.281, 'BTCUSDT': 2.302, 'MASKUSDT': 2.396, 'SFPUSDT': 2.74, 'LPTUSDT': 2.75, 'APEUSDT': 2.783, 'ARUSDT': 2.928, 'CELOUSDT': 2.951, 'ZILUSDT': 2.999, 'LTCUSDT': 3.072, 'SNXUSDT': 3.266, 'XEMUSDT': 3.555, 'XMRUSDT': 3.564, 'YFIUSDT': 3.794, 'BANDUSDT': 3.812, 'RAYUSDT': 3.924, 'REEFUSDT': 4.184, 'ANTUSDT': 4.205, 'XTZUSDT': 4.339, 'CTKUSDT': 4.352, 'LITUSDT': 4.38, 'RSRUSDT': 4.407, 'LINKUSDT': 4.412, 'BCHUSDT': 4.527, 'DASHUSDT': 5.037, 'BALUSDT': 5.172, 'OCEANUSDT': 5.277, 'EOSUSDT': 5.503, 'RENUSDT': 5.538, 'XLMUSDT': 5.563, 'TOMOUSDT': 5.567, 'ZECUSDT': 5.654, 'COMPUSDT': 5.87, 'DGBUSDT': 5.948, 'ALGOUSDT': 5.981, 'ONTUSDT': 5.997, 'BELUSDT': 6.101, 'TRXUSDT': 6.116, 'ZRXUSDT': 6.135, 'GRTUSDT': 6.45, '1INCHUSDT': 6.479, 'DOTUSDT': 6.502, 'ETHUSDT': 6.596, 'KAVAUSDT': 6.687, 'ICXUSDT': 6.74, 'SUSHIUSDT': 6.848, 'AAVEUSDT': 6.931, 'BTSUSDT': 6.961, 'KNCUSDT': 6.966, 'C98USDT': 7.091, 'THETAUSDT': 7.222, 'ATOMUSDT': 7.553, 'OMGUSDT': 7.556, 'SXPUSDT': 7.681, 'UNFIUSDT': 7.696, 'XRPUSDT': 7.726, 'TRBUSDT': 8.241, 'BLZUSDT': 8.434, 'NEOUSDT': 8.491, 'FLMUSDT': 8.506, 'KSMUSDT': 8.571, 'FILUSDT': 8.591, 'IOTAUSDT': 8.616, 'BATUSDT': 8.647, 'ARPAUSDT': 9.055, 'UNIUSDT': 9.104, 'WAVESUSDT': 9.106, 'MKRUSDT': 10.294, 'CRVUSDT': 10.513, 'STORJUSDT': 10.674, 'SKLUSDT': 11.009, 'CVCUSDT': 11.026, 'SRMUSDT': 11.031, 'QTUMUSDT': 12.066, 'ALPHAUSDT': 12.103, 'ZENUSDT': 12.631, 'VETUSDT': 13.296, 'ROSEUSDT': 13.429, 'FTTUSDT': 13.705, 'IOSTUSDT': 13.786, 'COTIUSDT': 13.958, 'NEARUSDT': 14.855, 'HBARUSDT': 15.312, 'RLCUSDT': 15.432, 'SCUSDT': 15.6, 'GALAUSDT': 15.722, 'RUNEUSDT': 15.795, 'ADAUSDT': 16.94, 'MTLUSDT': 17.18, 'BNBUSDT': 17.899, 'RVNUSDT': 18.169, 'EGLDUSDT': 18.879, 'LRCUSDT': 19.499, 'ANKRUSDT': 21.398, 'ETCUSDT': 23.51, 'DUSKUSDT': 23.55, 'AUDIOUSDT': 25.306, 'OGNUSDT': 25.524, 'GMTUSDT': 28.83, 'ENJUSDT': 33.073, 'STMXUSDT': 33.18, 'IOTXUSDT': 35.866, 'AVAXUSDT': 36.946, 'CHZUSDT': 37.128, 'CELRUSDT': 37.273, 'HNTUSDT': 38.779, 'CTSIUSDT': 41.108, 'HOTUSDT': 46.466, 'CHRUSDT': 61.091, 'MANAUSDT': 62.143, 'NKNUSDT': 70.636, 'ONEUSDT': 84.132, 'DENTUSDT': 99.973, 'DOGEUSDT': 121.447, 'SOLUSDT': 140.296, 'MATICUSDT': 161.846, 'FTMUSDT': 192.507, 'SANDUSDT': 203.219, 'AXSUSDT': 270.41}
#Current maximum backtest
draw_down = df_all.iloc[-1]/df_all.max()
print(draw_down.map(lambda x:round(x,3)).sort_values().to_dict())
{'ICPUSDT': 0.022, 'FILUSDT': 0.043, 'BAKEUSDT': 0.046, 'TLMUSDT': 0.05, 'LITUSDT': 0.053, 'LINAUSDT': 0.054, 'JASMYUSDT': 0.056, 'ALPHAUSDT': 0.062, 'RAYUSDT': 0.062, 'GRTUSDT': 0.067, 'DENTUSDT': 0.068, 'RSRUSDT': 0.068, 'XEMUSDT': 0.068, 'UNFIUSDT': 0.072, 'DYDXUSDT': 0.074, 'SUSHIUSDT': 0.074, 'OGNUSDT': 0.074, 'COMPUSDT': 0.074, 'NKNUSDT': 0.078, 'SKLUSDT': 0.08, 'DGBUSDT': 0.081, 'RLCUSDT': 0.085, 'REEFUSDT': 0.086, 'BANDUSDT': 0.086, 'HOTUSDT': 0.092, 'SRMUSDT': 0.092, 'RENUSDT': 0.092, 'BTSUSDT': 0.093, 'THETAUSDT': 0.094, 'FLMUSDT': 0.094, 'EOSUSDT': 0.095, 'TRBUSDT': 0.095, 'SXPUSDT': 0.095, 'ATAUSDT': 0.096, 'NEOUSDT': 0.096, 'FLOWUSDT': 0.097, 'YFIUSDT': 0.101, 'BALUSDT': 0.106, 'MASKUSDT': 0.106, 'ONTUSDT': 0.108, 'CELRUSDT': 0.108, 'AUDIOUSDT': 0.108, 'SCUSDT': 0.11, 'GALAUSDT': 0.113, 'GTCUSDT': 0.117, 'CTSIUSDT': 0.117, 'STMXUSDT': 0.118, 'DARUSDT': 0.118, 'ALICEUSDT': 0.119, 'SNXUSDT': 0.124, 'FTMUSDT': 0.126, 'BCHUSDT': 0.127, 'SFPUSDT': 0.127, 'ROSEUSDT': 0.128, 'DOGEUSDT': 0.128, 'RVNUSDT': 0.129, 'OCEANUSDT': 0.129, 'VETUSDT': 0.13, 'KSMUSDT': 0.131, 'ICXUSDT': 0.131, 'UNIUSDT': 0.131, 'ONEUSDT': 0.131, '1INCHUSDT': 0.134, 'IOTAUSDT': 0.139, 'C98USDT': 0.139, 'WAVESUSDT': 0.14, 'DUSKUSDT': 0.141, 'LINKUSDT': 0.143, 'DASHUSDT': 0.143, 'OMGUSDT': 0.143, 'PEOPLEUSDT': 0.143, 'AXSUSDT': 0.15, 'ENJUSDT': 0.15, 'QTUMUSDT': 0.152, 'SHIBUSDT': 0.154, 'ZENUSDT': 0.154, 'BLZUSDT': 0.154, 'ANTUSDT': 0.155, 'XECUSDT': 0.155, 'CHZUSDT': 0.158, 'RUNEUSDT': 0.163, 'ENSUSDT': 0.165, 'LRCUSDT': 0.167, 'CHRUSDT': 0.168, 'IOTXUSDT': 0.174, 'TOMOUSDT': 0.176, 'ALGOUSDT': 0.177, 'EGLDUSDT': 0.177, 'ARUSDT': 0.178, 'LTCUSDT': 0.178, 'HNTUSDT': 0.18, 'LPTUSDT': 0.181, 'SOLUSDT': 0.183, 'ARPAUSDT': 0.184, 'BELUSDT': 0.184, 'ETCUSDT': 0.186, 'ZRXUSDT': 0.187, 'AAVEUSDT': 0.187, 'CVCUSDT': 0.188, 'STORJUSDT': 0.189, 'COTIUSDT': 0.19, 'CELOUSDT': 0.191, 'SANDUSDT': 0.191, 'ADAUSDT': 0.192, 'HBARUSDT': 0.194, 'DOTUSDT': 0.195, 'XLMUSDT': 0.195, 'AVAXUSDT': 0.206, 'ANKRUSDT': 0.207, 'MTLUSDT': 0.208, 'MANAUSDT': 0.209, 'CRVUSDT': 0.213, 'API3USDT': 0.221, 'IOSTUSDT': 0.227, 'XRPUSDT': 0.228, 'BATUSDT': 0.228, 'MKRUSDT': 0.229, 'MATICUSDT': 0.229, 'CTKUSDT': 0.233, 'ZILUSDT': 0.233, 'WOOUSDT': 0.234, 'ATOMUSDT': 0.237, 'KLAYUSDT': 0.239, 'XTZUSDT': 0.245, 'IMXUSDT': 0.278, 'NEARUSDT': 0.285, 'GALUSDT': 0.299, 'APEUSDT': 0.305, 'ZECUSDT': 0.309, 'KAVAUSDT': 0.31, 'GMTUSDT': 0.327, 'FTTUSDT': 0.366, 'KNCUSDT': 0.401, 'ETHUSDT': 0.416, 'XMRUSDT': 0.422, 'BTCUSDT': 0.47, 'BNBUSDT': 0.476, 'TRXUSDT': 0.507, 'BNXUSDT': 0.64}

Tout d'abord, nous utilisons le code le plus simple pour simuler la situation de chute à la baisse, et voir le prix de liquidation de différentes valeurs de position. Puisque la stratégie détient toujours une position longue, il n'y a pas de risque de hausse. Le capital initial est de 1000, le prix de la devise est de 1, et le ratio d'ajustement est de 0,01. Les résultats sont les suivants. On peut voir que le risque de liquidation longue n'est pas faible. Avec un effet de levier de 1,5 fois, il peut résister à une baisse de 50%. Compte tenu de la situation actuelle du bas relatif, c'est un risque acceptable.

Valeur des positions Prix de la position longue
300 0.035
500 0.133
800 0.285
1000 0.362
1500 0.51
2000 0.599
3000 0.711
5000 0.81
10000 0.904
for Hold_value in [300,500,800,1000,1500,2000,3000,5000,10000]:
    amount = Hold_value/1
    hold_price = 1
    margin = 1000
    Pct = 0.01
    i = 0
    while margin > 0:
        i += 1
        if i>500:
            break
        buy_price = (1-Pct)*Hold_value/amount
        buy_amount = Hold_value*Pct/buy_price
        hold_price = (amount * hold_price + buy_amount * buy_price) / (buy_amount + amount)
        amount += buy_amount
        margin = 1000 + amount * (buy_price - hold_price)
    print(Hold_value, round(buy_price,3))
300 0.035
500 0.133
800 0.285
1000 0.362
1500 0.51
2000 0.599
3000 0.711
5000 0.81
10000 0.904
#Still using the original backtesting engine
class Exchange:
    
    def __init__(self, trade_symbols, fee=0.0004, initial_balance=10000):
        self.initial_balance = initial_balance #Initial assets
        self.fee = fee
        self.trade_symbols = trade_symbols
        self.account = {'USDT':{'realised_profit':0, 'unrealised_profit':0, 'total':initial_balance, 'fee':0}}
        for symbol in trade_symbols:
            self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0,'unrealised_profit':0,'fee':0}
            
    def Trade(self, symbol, direction, price, amount):
        
        cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
        open_amount = amount - cover_amount
        self.account['USDT']['realised_profit'] -= price*amount*self.fee #Deduct the handling fees
        self.account['USDT']['fee'] += price*amount*self.fee
        self.account[symbol]['fee'] += price*amount*self.fee

        if cover_amount > 0: #Close the position first
            self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount  #Profits
            self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
            
            self.account[symbol]['amount'] -= -direction*cover_amount
            self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
            
        if open_amount > 0:
            total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
            total_amount = direction*self.account[symbol]['amount']+open_amount
            
            self.account[symbol]['hold_price'] = total_cost/total_amount
            self.account[symbol]['amount'] += direction*open_amount
                    
    
    def Buy(self, symbol, price, amount):
        self.Trade(symbol, 1, price, amount)
        
    def Sell(self, symbol, price, amount):
        self.Trade(symbol, -1, price, amount)
        
    def Update(self, close_price): #Update of assets
        self.account['USDT']['unrealised_profit'] = 0
        for symbol in self.trade_symbols:
            self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
            self.account[symbol]['price'] = close_price[symbol]
            self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
            self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
        self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)

Tout d'abord, nous backtestons la performance de la stratégie de solde TRX. Le retracement maximal de TRX dans cette ronde de marché baissier est relativement faible, il a donc une certaine spécificité. Les données sont sélectionnées à partir de la ligne 5min K de 2021 à nos jours, avec un capital initial de 1000, le ratio d'ajustement est de 0,01, la valeur de position est de 2000 et les frais de manutention sont de 0,0002.

Le prix initial de TRX était de 0,02676U, et le prix le plus élevé au cours de la période a atteint 0,18U. Il est actuellement autour de 0,08U, et les fluctuations sont très violentes.

Le rendement final du backtest est de 4524U, ce qui est très proche du rendement de TRX à 0,18. Le levier est inférieur à 2 fois depuis le début et finalement inférieur à 0,4, et la possibilité de liquidation est également de plus en plus faible, au cours de laquelle il peut y avoir une occasion d'augmenter la valeur de la position. Mais en dessous de 2000U est toujours le même revenu. C'est également l'un des inconvénients de la stratégie de balance.

symbol = 'TRXUSDT'
df_trx = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_trx.close.plot(figsize=(15,6),grid=True);

png

#TRX balance strategy backtest
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_trx.iloc[0].open
res_list = [] #For storing intermediate results
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_trx.itertuples():
    buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
    sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    
    while row.low < buy_price:
        e.Buy(symbol,buy_price,pct*hold_value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    while row.high > sell_price:
        e.Sell(symbol,sell_price,pct*hold_value/sell_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx.index = pd.to_datetime(res_trx.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4524.226998288555 91.0
#Profit
res_trx.profit.plot(figsize=(15,6),grid=True);

png

#Actual leverage of occupancy
(res_trx.value/(res_trx.profit+1000)).plot(figsize=(15,6),grid=True);

png

Cette monnaie est assez spéciale. elle est passée de 6U à 60U au début, et finalement est revenue à l'actuelle 8U. le bénéfice final est de 4945, beaucoup plus que le profit de maintenir la monnaie inchangée.

symbol = 'WAVESUSDT'
df_waves = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_waves.close.plot(figsize=(15,6),grid=True);

png

#TWAVES balanced strategy backtest
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_waves.iloc[0].open
res_list = [] #For storing intermediate results
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_waves.itertuples():
    buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
    sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    
    while row.low < buy_price:
        e.Buy(symbol,buy_price,pct*hold_value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    while row.high > sell_price:
        e.Sell(symbol,sell_price,pct*hold_value/sell_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves.index = pd.to_datetime(res_waves.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4945.149323437233 178.0
df_waves.profit.plot(figsize=(15,6),grid=True);

png

Au fait, la performance de la stratégie de réseau est backtestée, l'espacement de la grille est de 0,01, et la valeur de la grille est de 10. Dans le cas d'une augmentation de près de 10 fois, les deux WAVES et TRX ont connu d'énormes baisses. Parmi eux, WAVES a retiré 5000U et TRX a également dépassé 3000U. Si le capital initial est faible, les positions seront presque liquidées.

#Grid strategy
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_waves.iloc[0].open
res_list = [] #For storing intermediate results
for row in df_waves.itertuples():
    buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])

    while row.low < buy_price:
        e.Buy(symbol,buy_price,value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) #The buy order price, since it is a pending order transaction, is also the final matching price=
    while row.high > sell_price:
        e.Sell(symbol,sell_price,value/sell_price)
        e.Update({symbol:row.close})
        sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves_net.index = pd.to_datetime(res_waves_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 1678.0516101975015 70.0
res_waves_net.profit.plot(figsize=(15,6),grid=True);

png

#Grid strategy
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_trx.iloc[0].open
res_list = [] #For storing intermediate results
for row in df_trx.itertuples():
    buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])

    while row.low < buy_price:
        e.Buy(symbol,buy_price,value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    while row.high > sell_price:
        e.Sell(symbol,sell_price,value/sell_price)
        e.Update({symbol:row.close})
        sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx_net.index = pd.to_datetime(res_trx_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 -161.06952570521656 37.0
res_trx_net.profit.plot(figsize=(15,6),grid=True);

png

Résumé

Cette fois, l'analyse de backtest a utilisé la ligne K de 5 min, les fluctuations au milieu ne sont pas complètement simulées, donc les bénéfices réels devraient être légèrement plus élevés. Dans l'ensemble, la stratégie de balance comporte un risque relativement faible, n'a pas peur d'exploser, et il n'est pas nécessaire d'ajuster les paramètres, elle est relativement facile à utiliser et adaptée aux utilisateurs novices. La stratégie de grille est très sensible à la fixation initiale des prix et nécessite un certain jugement du marché. À long terme, le risque de court-circuit est élevé.

La bataille Binance de mille ligues fournira un accès gratuit à la stratégie de l'équilibre perpétuel, et tout le monde est invité à l'expérimenter.


Contenu lié

En savoir plus