Les ressources ont été chargées... Je charge...

Stratégie de rupture de la tendance à la suralimentation extrême

Auteur:ChaoZhang est là., Date: le 28 septembre 2023
Les étiquettes:

Résumé

Cette stratégie vise à capturer les fortes tendances sur les marchés des crypto-monnaies en utilisant plusieurs canaux et moyennes mobiles pour identifier les signaux de tendance, et combine des indicateurs de volume pour filtrer les fausses ruptures tout en arrêtant adaptivement les pertes pour verrouiller les bénéfices, ce qui permet de réaliser des bénéfices sur les marchés en tendance.

Principe de stratégie

La stratégie utilise une combinaison de canal rapide, de canal lent et de moyenne mobile rapide pour identifier les tendances. Les paramètres du canal rapide sont plus sensibles pour capturer les fluctuations de prix à court terme; les paramètres du canal lent sont plus modérés pour juger de la tendance majeure; les paramètres de la moyenne mobile rapide sont intermédiaires, générant des signaux de trading lorsqu'il traverse le canal.

Plus précisément, il calcule d'abord les rails supérieurs et inférieurs du canal rapide et la moyenne mobile. Lorsque le prix traverse le rail supérieur, si le rail inférieur du canal lent est également au-dessus de la moyenne mobile, un signal long est généré; inversement, lorsqu'il traverse le rail inférieur, il vérifie si le rail supérieur du canal lent est en dessous de la moyenne mobile, générant un signal court.

En outre, il détecte le schéma de la ligne K, ce qui nécessite que plusieurs lignes K soient disposées en séquence pour filtrer les fausses ruptures; et calcule l'indicateur du taux de variation des prix pour déterminer s'il est entré dans une consolidation afin d'éviter de manquer des opportunités de renversement; et incorpore des indicateurs de volume pour s'assurer que le volume suit le prix à la rupture.

Pour le stop loss, la stratégie utilise des stop loss adaptatifs. Basé sur la volatilité récente, il ajuste dynamiquement le pourcentage de stop loss. Cela permet de verrouiller autant que possible le profit de la tendance tout en assurant un stop loss efficace.

Analyse des avantages

Le plus grand avantage de cette stratégie est que les critères de génération de signaux de trading sont relativement stricts, ce qui peut filtrer efficacement les fausses ruptures non tendance et vraiment capturer les points tournants des tendances du marché.

  1. La combinaison de canaux multiples et de moyennes mobiles comporte des critères plus stricts et peut réduire la probabilité d'erreur de jugement.

  2. La validation de la séquence de ligne K évite les signaux erronés d'une seule ligne K aberrante.

  3. L'incorporation d'un indicateur de taux de variation des prix permet de déterminer s'il est entré en consolidation afin d'éviter de manquer des opportunités d'inversion.

  4. L'ajout du jugement de l'indicateur de volume garantit que les signaux ne sont générés que lorsque le volume suit le prix, évitant ainsi une rupture inefficace.

  5. Le mécanisme de stop loss adaptatif peut maximiser le verrouillage des bénéfices de tendance tout en assurant le stop loss.

Donc, en général, cette stratégie a les caractéristiques d'une configuration optimisée, une prise de décision prudente, un stop loss adaptatif, ce qui la rend très appropriée pour saisir les opportunités de tendance.

Analyse des risques

Bien que cette stratégie ait fait beaucoup d'optimisation pour filtrer les fausses éruptions et capturer les tendances, il y a encore quelques risques à noter:

  1. Les paramètres complexes peuvent entraîner de grandes différences entre les combinaisons de paramètres, ce qui nécessite des tests approfondis pour trouver les paramètres optimaux, sinon il peut générer trop de faux signaux.

  2. Lorsque l'écart entre la moyenne mobile rapide et le canal est trop faible, il tend à générer des entrées et des sorties fréquentes, ce qui n'est pas propice à un suivi persistant des tendances.

  3. Le calcul du pourcentage de stop loss dans le mécanisme de stop loss adaptatif repose sur un simple écart type, qui peut entraîner un stop loss insuffisant dans des conditions de marché extrêmes.

  4. Elle repose fortement sur des indicateurs techniques et peut ne pas répondre aux changements fondamentaux majeurs.

  5. En tant que tendance à suivre la stratégie, il est moins performant sur les marchés instables.

Pour contrôler ces risques, les mesures suivantes sont recommandées:

  1. Faites suffisamment de backtesting pour déterminer les combinaisons optimales de paramètres, ou envisagez d'utiliser l'apprentissage automatique pour l'optimisation des paramètres.

  2. Élargir modérément les intervalles de canaux, allonger les périodes de moyenne mobile pour réduire les entrées inutiles.

  3. Envisagez d'introduire des modèles de volatilité plus avancés comme les méthodes des fonds spéculatifs.

  4. Se référer aux informations fondamentales en temps opportun pour éviter les transactions purement techniques.

  5. Augmenter le jugement sur l'état du marché et mettre en pause les transactions sur les marchés agités.

Optimisation

La stratégie peut être encore optimisée de la manière suivante:

  1. Introduire des algorithmes d'apprentissage automatique pour obtenir une optimisation automatique des paramètres, en enregistrant les performances des paramètres dans différents environnements de marché afin de créer une table de recherche pour une optimisation dynamique.

  2. Ajoutez un jugement sur l'état du marché, comme l'ajout de modules pour déterminer si le marché est tendance ou agitée, et mettre en pause les transactions sur les marchés agités pour éviter des pertes inutiles.

  3. Optimiser les stratégies d'arrêt de perte, telles que la perte d'arrêt de suivi, la perte d'arrêt proportionnelle, etc.

  4. Incorporer des facteurs fondamentaux pour envoyer des alertes lorsque des événements fondamentaux majeurs se produisent, en évitant des pertes basées uniquement sur des indicateurs techniques.

  5. Effectuer une optimisation du portefeuille, en combinant cette stratégie avec d'autres stratégies non liées pour diversifier davantage les risques.

  6. Mettre en place un cadre quantitatif de négociation pour l'exécution automatisée des signaux et un contrôle strict des risques.

Conclusion

En résumé, cette stratégie est très appropriée pour capturer les opportunités de tendance sur les marchés de crypto-monnaie. Elle utilise plusieurs canaux et moyennes mobiles pour générer des signaux de trading, et filtre efficacement le bruit de fausse rupture et bloque avec succès les profits de tendance. Mais l'optimisation des paramètres, les méthodes de stop loss, le jugement de l'état du marché, etc. nécessitent encore une attention. Avec une amélioration continue, elle a un potentiel de rendement stable des investissements.


/*backtest
start: 2022-09-21 00:00:00
end: 2023-09-27 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
strategy("Extremely Overfit", overlay=true, commission_type=strategy.commission.percent, commission_value=.16, default_qty_type=strategy.percent_of_equity, default_qty_value=100, pyramiding = 1)
price = close

goLong = input(title="go long?", type=input.bool, defval=true)
goShort = input(title="go short?", type=input.bool, defval=true)
//trendRestrict = input(title="basic trend restriction?", type=input.bool, defval=false)
dynamicRestrict = true //input(title="dynamic trend restriction?", type=input.bool, defval=true)
longtrendimpt = true //input(title="additional weight on long-term trends?", type=input.bool, defval=true)
volRestrict = true //input(title="volume restriction?", type=input.bool, defval=true)
conservativeClose = false //input(title="conservative order closing?", type=input.bool, defval=false)

Restrictiveness = input ( -40,step=10,title ="Restrictiveness (higher = make fewer trades)")
volatilityImportance = 3.2 //input( 3.2, step = 0.1, minval = 0)
fastChannelLength = input( 6 )
fastChannelMargin = input ( 3.2, step = 0.1, minval = 0)
slowChannelLength = input ( 6, step = 1, minval = 0)
slowChannelMargin = input ( 1.5, step = 0.1, minval = 0)
fastHMAlength = input (4, step = 1, minval = 0)
stopLoss = input( 3, step = 0.1, minval = 0)
//altClosePeriod = input( 27, step = 1, minval = 1)
//altCloseFactor = input( 4.9, step = 0.1)
stopLossFlexibility = 50 //input(50, step=10, title="effect of volatility on SL?")
volumeMAlength = 14 //input ( 14, step = 1, minval = 1)
volumeVolatilityCutoff = 3.8 // ( 3.8, step = 1, minval = 0)
trendSensitivity = 3.8 //input ( 3.8, step = 0.1)
obvLookback = 10 //input(10, step = 10, minval = 10)
obvCorrThreshold = 0.89 //input(0.89, step = 0.01)
ROClength = 80 //input( 80, step = 10)
ROCcutoff = 5.6 //input( 5.6, step=0.1)

trendRestrict = false
//trendLookback = input ( 360, step = 10, minval = 10)
//longTrendLookback = input(720, step = 10, minval = 10)
//longTrendImportance = input(1.5, step = 0.05)
trendLookback = 360
longTrendLookback = 720
longTrendImportance = 1.5

//conservativeness = input( 2.4, step = 0.1)
conservativeness = 0
//trendPower = input( 0, step=1)
trendPower = 0
//conservativenessLookback = input( 650, step = 10, minval = 0)
conservativenessLookback = 10
//consAffectFactor = input( 0.85,step=0.01)
consAffectFactor = 0.85
//volatilityLookback = input(50, step=1, minval=2)
volatilityLookback = int(50)
recentVol = stdev(price,volatilityLookback)/sqrt(volatilityLookback)

//price channel

fastChannel = ema(price, fastChannelLength)
fastChannelUB = fastChannel * (1 + (float(fastChannelMargin) / 1000)) + (recentVol * (float(volatilityImportance) * (1 + (Restrictiveness/100))))
fastChannelLB = fastChannel * (1 - (float(fastChannelMargin) / 1000)) - (recentVol * (float(volatilityImportance) * (1 + (Restrictiveness/100))))
fchU = ((fastChannelUB < open) and (fastChannelUB < close))
fchL = ((fastChannelLB > open) and (fastChannelLB > close))
//plot(fastChannelUB)
//plot(fastChannelLB)

//slow channel
//slowChannelLBmargin = input ( 2, step = 0.1, minval = 0 )
slowChannel = ema(ema(price,slowChannelLength),slowChannelLength)
slowChannelUB = slowChannel * (1 + (float(slowChannelMargin) / 2000)) + (recentVol * (float(volatilityImportance) * (1 + (Restrictiveness/100))))
slowChannelLB = slowChannel * (1 - (float(slowChannelMargin) / 2000)) - (recentVol * (float(volatilityImportance) * (1 + (Restrictiveness/100))))
schU = ((slowChannelUB < close))
schL = ((slowChannelLB > close))
cschU = (((slowChannelUB * (1 + conservativeness)) < close))
cschL = (((slowChannelUB * (1 - conservativeness)) > close))
//plot(slowChannel,color = #00FF00)
//plot(slowChannelUB,color = #00FF00)
//plot(slowChannelLB,color = #00FF00)


fastHMA = hma(price,fastHMAlength)
fastAboveUB = (fastHMA > slowChannelUB)
fastBelowLB = (fastHMA < slowChannelLB)
//plot(fastHMA, color = 	#FF0000, linewidth = 2)

//consecutive candles
//consecutiveCandlesReq = input(1, step = 1, minval = 1, maxval = 4)
consecutiveCandlesReq = 1
consecutiveBullReq = float(consecutiveCandlesReq)
consecutiveBearReq = float(consecutiveCandlesReq)
cbull = ((close[0] > close[1]) and (consecutiveBullReq == 1)) or (((close[0] > close[1]) and (close[1] > close[2])) and consecutiveBullReq == 2) or (((close[0] > close[1]) and (close[1] > close[2]) and (close[2] > close[3])) and consecutiveBullReq == 3) or (((close[0] > close[1]) and (close[1] > close[2]) and (close[2] > close[3]) and (close[3] > close[4])) and consecutiveBullReq == 4)
cbear = ((close[0] < close[1]) and (consecutiveBearReq == 1)) or (((close[0] < close[1]) and (close[1] < close[2])) and consecutiveBearReq == 2) or (((close[0] < close[1]) and (close[1] < close[2]) and (close[2] < close[3])) and consecutiveBearReq == 3) or (((close[0] < close[1]) and (close[1] < close[2]) and (close[2] < close[3]) and (close[3] < close[4])) and consecutiveBearReq == 4)

//trend detection
//trendCutoff = input(0, step = 0.1)
trendCutoff = 0
trendDetectionPct = float(trendCutoff/100)
trendVal = float((close[0] - close[trendLookback])/close[0])
trendUp = (trendVal > (0 + trendDetectionPct))
trendDown = (trendVal < (0 - trendDetectionPct))
//plot(trendVal+36.5,linewidth=2)

// peak indicators
peakHigh = ((fastHMA > fastChannelUB) and (fastChannelLB > slowChannelUB))
peakLow = ((fastHMA < fastChannelLB) and (fastChannelUB < slowChannelLB))
TpeakHigh = (fastHMA > fastChannelUB) and (fastChannelUB > slowChannelUB)
TpeakLow = (fastHMA < fastChannelUB) and (fastChannelLB < slowChannelLB)
//TpeakHigh = (fastHMA > fastChannelUB) and (fastChannelLB > avg(slowChannelUB,slowChannelLB))
//TpeakLow = (fastHMA < fastChannelUB) and (fastChannelUB < avg(slowChannelLB,slowChannelUB))
//TpeakHigh = ((crossover(fastHMA,fastChannelUB)) and (fastChannelLB > slowChannelUB))
//TpeakLow = ((crossover(fastChannelLB,fastHMA)) and (fastChannelUB < slowChannelLB))
//TpeakHigh = (fastHMA > (fastChannelUB * (1 + (trendPower/800)))) and (fastChannelUB > (slowChannelUB * (1 + (trendPower/800))))
//TpeakLow = (fastHMA < (fastChannelUB * (1 - (trendPower/800)))) and (fastChannelLB < (slowChannelLB * (1 - (trendPower/800))))
//TpeakHigh = (fastHMA > (fastChannelUB * (1 + (trendPower/800)))) and (avg(fastChannelUB,fastChannelLB) > (slowChannelUB * (1 + (trendPower/800))))
//TpeakLow = (fastHMA < (fastChannelUB * (1 - (trendPower/800)))) and (avg(fastChannelLB,fastChannelUB) < (slowChannelLB * (1 - (trendPower/800))))
//plot(fastChannelUB * (1 + (trendPower/700)), color=#FF69B4)

// and for closing...
closeLong = (crossover(fastHMA,fastChannelUB) and (fastChannelLB > slowChannelUB))
closeShort = (crossover(fastChannelLB,fastHMA) and (fastChannelUB < slowChannelLB))
//closeLong = (crossover(fastHMA,fastChannelUB) and (fastChannelLB > slowChannelUB)) or (roc(price,altClosePeriod) > altCloseFactor)
//closeShort = (crossover(fastChannelLB,fastHMA) and (fastChannelUB < slowChannelLB))  or (roc(price,altClosePeriod) < (altCloseFactor) * -1)
//closeLong = (crossover(fastHMA,fastChannelUB) and (fastChannelLB > slowChannelUB)) or (((price - fastChannelUB) > (altCloseFactor * abs(((fastChannelUB - fastChannelLB)/2) - ((slowChannelUB - slowChannelLB)/2)))) and (fastChannelLB > slowChannelUB))
//closeShort = (crossover(fastChannelLB,fastHMA) and (fastChannelUB < slowChannelLB)) or (((fastChannelLB - price) > (altCloseFactor * abs(((fastChannelUB - fastChannelLB)/2) - ((slowChannelUB - slowChannelLB)/2)))) and (fastChannelUB < slowChannelLB))
//closeLong = crossover(fastHMA,fastChannelUB) and ((fastChannelLB[0] - fastChannelLB[1]) < (slowChannelUB[0] - slowChannelUB[1]))
//closeShort = crossover(fastChannelLB,fastHMA) and ((fastChannelUB[0] - fastChannelUB[1]) > (slowChannelLB[0] - slowChannelLB[1]))


//stop-loss
priceDev = stdev(price,trendLookback) * (1 + stopLossFlexibility/5)
stopLossMod = stopLoss * (1 + (priceDev/price))
//longStopPrice  = strategy.position_avg_price * (1 - (stopLoss/100))
//shortStopPrice = strategy.position_avg_price * (1 + (stopLoss/100))
longStopPrice  = strategy.position_avg_price * (1 - (stopLossMod/100))
shortStopPrice = strategy.position_avg_price * (1 + (stopLossMod/100))


// volume
volumeMA = ema(volume,volumeMAlength)
volumeDecrease = ((not volRestrict ) or (volumeMA[0] < ema(volumeMA[1] * (1 - (volumeVolatilityCutoff/100)),5)))
volumeCutoff = ema(volumeMA[1] * (1 - (volumeVolatilityCutoff/100)),5)
//plot(volumeMA)
//plot(volumeCutoff)

// detect volatility
//trendinessLookback = input ( 600, step = 10, minval = 0)
trendinessLookback = trendLookback
trendiness = (stdev(price,trendinessLookback)/price) * (1 - (Restrictiveness/100))
longtermTrend = ((price - price[longTrendLookback])/price)
//dynamicTrendDetected = (dynamicRestrict and (abs(trendiness * 100) < trendSensitivity))
dynamicTrendDetected = (longtrendimpt and (dynamicRestrict and (abs(trendiness * 100) < (trendSensitivity+(longtermTrend * longTrendImportance))))) or (not longtrendimpt and ((dynamicRestrict and (abs(trendiness * 100) < trendSensitivity))))

// adapt conservativeness to volatility

//consVal = sma(((stdev(price,conservativenessLookback))/price)*100,25)
consVal = sma(((stdev(price,conservativenessLookback))/price)*100,25)
cVnorm = sma(avg(consVal,3),60)
cVal = consVal - cVnorm

//conservativenessMod = conservativeness * (cVal * consAffectFactor)
conservativenessMod = conservativeness * (consVal * consAffectFactor)
//plot(consVal,linewidth=4)
//plot(cVnorm,color = #00FF00)
//plot(cVal,linewidth=2)

// ROC cutoff (for CLOSING)
//rocCloseLong = (ema(roc(price,ROClength),10) > ROCcutoff)
//rocCloseShort = (ema(roc(price,ROClength),10) < (ROCcutoff * -1))
ROCval = roc(price,ROClength)
ROCema = ema(ROCval,30)
ROCabs = abs(ROCema)
ROCallow = ROCabs < ROCcutoff
ROCallowLong = (ROCabs < ROCcutoff)  or ((ROCabs >= ROCcutoff) and ((fastChannelLB < slowChannelLB) and (fastHMA < fastChannelLB)))
ROCallowShort = (ROCabs < ROCcutoff) or ((ROCabs >= ROCcutoff) and ((fastChannelUB > slowChannelUB) and (fastHMA > fastChannelUB)))
//plot(ROCallow)

// obv
evidence_obv = (correlation(price,obv[0],obvLookback))
obvAllow = evidence_obv > obvCorrThreshold


//if (not na(vrsi))
if trendRestrict or dynamicTrendDetected
    //if (strategy.position_size == 0)
    if not (strategy.position_size < 0)
        if trendUp
        	//if cbear and schL and fchL and trendUp and goLong
        	if cbear and TpeakLow and volumeDecrease and ROCallow and goLong and obvAllow
        	//if cbear and peakLow and rocHigh and volumeDecrease and goLong
        		strategy.entry("Long", strategy.long, comment="Long")
    if not (strategy.position_size > 0)
        if trendDown
        	//if cbull and schU and fchU and trendDown and goShort
        	if cbull and TpeakHigh and volumeDecrease and ROCallow and goShort and obvAllow
        	//if cbull and peakHigh and rocLow and volumeDecrease and goShort
        		strategy.entry("Short", strategy.short, comment="Short")
else
    //if (strategy.position_size == 0)
    if not (strategy.position_size < 0)
        //if cbear and peakLow and goLong
    	//if cbear and peakLow and volumeDecrease and ROCallow and goLong
    	if TpeakLow and goLong and obvAllow
    		strategy.entry("Long", strategy.long, comment="Long")
    if not (strategy.position_size > 0)
        //if cbull and peakHigh and goShort
    	//if cbull and peakHigh and volumeDecrease and ROCallow and goShort
    	if TpeakHigh and goShort and obvAllow
    		strategy.entry("Short", strategy.short, comment="Short")

if conservativeClose
    //pkHigh = ((fastHMA > fastChannelUB) and (fastChannelUB > (slowChannelUB * (1 + conservativeness/1000))))
    //pkLow = ((fastHMA < fastChannelLB) and (fastChannelLB < (slowChannelLB * (1 - conservativeness/1000))))
    //pkHigh = ((fastHMA > fastChannelUB) and (fastChannelUB > (slowChannelUB * (1 + conservativenessMod/1000))))
    //pkLow = ((fastHMA < fastChannelLB) and (fastChannelLB < (slowChannelLB * (1 - conservativenessMod/1000))))
    pkHigh = ((fastHMA > fastChannelUB) and (fastChannelUB > (slowChannelUB * (1 + ((conservativenessMod/1000) * (1 - Restrictiveness/100))))))
    pkLow = ((fastHMA < fastChannelLB) and (fastChannelLB < (slowChannelLB * (1 - ((conservativenessMod/1000) * (1 - Restrictiveness/100))))))
    
    if (strategy.position_size > 0)
        //if fastAboveUB
        //if pkHigh and closeLong
        if closeLong
    		strategy.close("Long", comment="closeLong")
    if (strategy.position_size < 0)
        //if fastBelowLB
        //if pkLow and closeShort
        if closeShort
    		strategy.close("Short", comment="closeShort")
else
    if (strategy.position_size > 0)
        //if fastAboveUB
        if peakHigh
    		strategy.close("Long", comment="closeLong")
    if (strategy.position_size < 0)
        //if fastBelowLB
        if peakLow
    		strategy.close("Short", comment="closeShort")

if (strategy.position_size > 0)
    strategy.exit(id="Long", stop=longStopPrice, comment="stopLong")

if (strategy.position_size < 0)
    strategy.exit(id="Short", stop=shortStopPrice, comment="stopShort")
//plot(strategy.equity, title="equity", color=color.red, linewidth=2, style=plot.style_areabr)












Plus de