Cette stratégie génère des signaux d'achat et de vente basés sur l'inversion de plusieurs indicateurs de tendance, y compris TDI, TCF, TTF et TII. La stratégie permet de choisir le signal d'indicateur à utiliser pour les entrées et les sorties.
L'indicateur TDI est construit en utilisant la dynamique des prix avec des techniques de somme et de lissage.
L'indicateur TCF mesure les variations positives et négatives des prix pour mesurer les forces haussières et baissières.
L'indicateur TTF compare la puissance des prix les plus élevés et les plus bas pour déterminer la tendance.
Le TII combine la moyenne mobile et les bandes de prix pour identifier les renversements de tendance. Il prend en compte les tendances à court et à long terme.
La logique d'entrée longue et proche sélectionne les signaux appropriés en fonction de l'indicateur configuré.
La stratégie intègre plusieurs indicateurs de négociation de tendance couramment utilisés, ce qui permet une flexibilité d'adaptation aux conditions changeantes du marché.
Les principaux risques auxquels cette stratégie est confrontée:
Les risques peuvent être réduits par:
La stratégie peut être améliorée dans plusieurs domaines:
En combinant de multiples indicateurs d'inversion de tendance et en optimisant les configurations, cette stratégie est adaptable à différents environnements de marché pouropérer à des points de basculement de tendance.La clé est de trouver les paramètres et indicateurs optimaux tout en contrôlant le risque.Des optimisations et des validations continues peuvent construire une stratégie alpha stable.
/*backtest start: 2023-11-13 00:00:00 end: 2023-11-15 03:00:00 period: 5m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 // // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © kruskakli // // Here is a collection of Trend Indicators as defined by M.H Pee and presented // in various articles of the "STOCKS & COMMODITIES Magazine" // // The actual implementation of the indicators here are made by: everget // // I have gather them here so that they easily can be tested. // // My own test was made using 15 companies from the OMXS30 list // during the time period of 2016-2018, and I only went LONG. // // The result was as follows: // // Average Std.Dev // profit // TDI 3.04% 5.97 // TTF 1.22%. 5.73 // TII 1.07% 6.2 // TCF 0.32% 2.68 // strategy("M.H Pee indicators", overlay=true) use = input(defval="TDI", title="Use Indicator", type=input.string, options=["TDI","TCF","TTF","TII"]) src = close // // TDI // length = input(title="Length", type=input.integer, defval=20) mom = change(close, length) tdi = abs(sum(mom, length)) - sum(abs(mom), length * 2) + sum(abs(mom), length) // Direction Indicator tdiDirection = sum(mom, length) tdiLong = crossover(tdiDirection, tdi) tdiXLong = crossunder(tdiDirection, tdi) // // TCF // tcflength = input(title="Length", type=input.integer, defval=35) plusChange(src) => change_1 = change(src) change(src) > 0 ? change_1 : 0.0 minusChange(src) => change_1 = change(src) change(src) > 0 ? 0.0 : -change_1 plusCF = 0.0 plusChange__1 = plusChange(src) plusCF := plusChange(src) == 0 ? 0.0 : plusChange__1 + nz(plusCF[1]) minusCF = 0.0 minusChange__1 = minusChange(src) minusCF := minusChange(src) == 0 ? 0.0 : minusChange__1 + nz(minusCF[1]) plusTCF = sum(plusChange(src) - minusCF, tcflength) minusTCF = sum(minusChange(src) - plusCF, tcflength) tcfLong = plusTCF > 0 tcfXLong = plusTCF < 0 // // TTF // ttflength = input(title="Lookback Length", type=input.integer, defval=15) hh = highest(length) ll = lowest(length) buyPower = hh - nz(ll[length]) sellPower = nz(hh[length]) - ll ttf = 200 * (buyPower - sellPower) / (buyPower + sellPower) ttfLong = crossover(ttf, 100) ttfXLong = crossunder(ttf, -100) // // TII // majorLength = input(title="Major Length", type=input.integer, defval=60) minorLength = input(title="Minor Length", type=input.integer, defval=30) upperLevel = input(title="Upper Level", type=input.integer, defval=80) lowerLevel = input(title="Lower Level", type=input.integer, defval=20) sma = sma(src, majorLength) positiveSum = 0.0 negativeSum = 0.0 for i = 0 to minorLength - 1 by 1 price = nz(src[i]) avg = nz(sma[i]) positiveSum := positiveSum + (price > avg ? price - avg : 0) negativeSum := negativeSum + (price > avg ? 0 : avg - price) negativeSum tii = 100 * positiveSum / (positiveSum + negativeSum) tiiLong = crossover(tii, 80) tiiXLong = crossunder(tii,80) // // LOGIC // enterLong = (use == "TDI" and tdiLong) or (use == "TCF" and tcfLong) or (use == "TTF" and ttfLong) or (use == "TII" and tiiLong) exitLong = (use == "TDI" and tdiXLong) or (use == "TCF" and tcfXLong) or (use == "TTF" and ttfXLong) or (use == "TII" and tiiXLong) // Time range for Back Testing btStartYear = input(title="Back Testing Start Year", type=input.integer, defval=2016) btStartMonth = input(title="Back Testing Start Month", type=input.integer, defval=1) btStartDay = input(title="Back Testing Start Day", type=input.integer, defval=1) startTime = timestamp(btStartYear, btStartMonth, btStartDay, 0, 0) btStopYear = input(title="Back Testing Stop Year", type=input.integer, defval=2028) btStopMonth = input(title="Back Testing Stop Month", type=input.integer, defval=12) btStopDay = input(title="Back Testing Stop Day", type=input.integer, defval=31) stopTime = timestamp(btStopYear, btStopMonth, btStopDay, 0, 0) window() => time >= startTime and time <= stopTime ? true : false riskPerc = input(title="Max Position %", type=input.float, defval=20, step=0.5) maxLossPerc = input(title="Max Loss Risk %", type=input.float, defval=5, step=0.25) // Average True Range (ATR) measures market volatility. // We use it for calculating position sizes. atrLen = input(title="ATR Length", type=input.integer, defval=14) stopOffset = input(title="Stop Offset", type=input.float, defval=1.5, step=0.25) limitOffset = input(title="Limit Offset", type=input.float, defval=1.0, step=0.25) atrValue = atr(atrLen) // Calculate position size maxPos = floor((strategy.equity * (riskPerc/100)) / src) // The position sizing algorithm is based on two parts: // a certain percentage of the strategy's equity and // the ATR in currency value. riskEquity = (riskPerc / 100) * strategy.equity // Translate the ATR into the instrument's currency value. atrCurrency = (atrValue * syminfo.pointvalue) posSize0 = min(floor(riskEquity / atrCurrency), maxPos) posSize = posSize0 < 1 ? 1 : posSize0 if (window()) strategy.entry("Long", long=true, qty=posSize0, when=enterLong) strategy.close_all(when=exitLong)