Cette stratégie intègre la décomposition des séries chronologiques, le prix moyen pondéré par volume, les bandes de Bollinger et delta (OBV-PVT) 4 indicateurs techniques pour faire des jugements multidimensionnels sur les tendances des prix, les conditions de surachat et de survente.
Des paramètres tels que les moyennes mobiles, les largeurs des bandes de Bollinger et les ratios risque-rendement peuvent être optimisés pour réduire la fréquence des transactions tout en améliorant les rendements ajustés au risque par transaction.
Intégrant des outils tels que la décomposition des séries temporelles, les bandes de Bollinger, les indicateurs OBV, cette stratégie combine les relations prix-volume, les propriétés statistiques et l'analyse des tendances pour identifier les renversements à court terme et attraper les tendances majeures.
/*backtest start: 2023-10-24 00:00:00 end: 2023-11-23 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ //// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © oakwhiz and tathal //@version=4 strategy("BBPBΔ(OBV-PVT)BB", default_qty_type=strategy.percent_of_equity, default_qty_value=100) startDate = input(title="Start Date", type=input.integer, defval=1, minval=1, maxval=31) startMonth = input(title="Start Month", type=input.integer, defval=1, minval=1, maxval=12) startYear = input(title="Start Year", type=input.integer, defval=2010, minval=1800, maxval=2100) endDate = input(title="End Date", type=input.integer, defval=31, minval=1, maxval=31) endMonth = input(title="End Month", type=input.integer, defval=12, minval=1, maxval=12) endYear = input(title="End Year", type=input.integer, defval=2021, minval=1800, maxval=2100) // Normalize Function normalize(_src, _min, _max) => // Normalizes series with unknown min/max using historical min/max. // _src : series to rescale. // _min, _min: min/max values of rescaled series. var _historicMin = 10e10 var _historicMax = -10e10 _historicMin := min(nz(_src, _historicMin), _historicMin) _historicMax := max(nz(_src, _historicMax), _historicMax) _min + (_max - _min) * (_src - _historicMin) / max(_historicMax - _historicMin, 10e-10) // STEP 2: // Look if the close time of the current bar // falls inside the date range inDateRange = true // Stop loss & Take Profit Section sl_inp = input(2.0, title='Stop Loss %')/100 tp_inp = input(4.0, title='Take Profit %')/100 stop_level = strategy.position_avg_price * (1 - sl_inp) take_level = strategy.position_avg_price * (1 + tp_inp) icreturn = false innercandle = if (high < high[1]) and (low > low[1]) icreturn := true src = close float change_src = change(src) float i_obv = cum(change_src > 0 ? volume : change_src < 0 ? -volume : 0*volume) float i_pvt = pvt float result = change(i_obv - i_pvt) float nresult = ema(normalize(result, -1, 1), 20) length = input(20, minval=1) mult = input(2.0, minval=0.001, maxval=50, title="StdDev") basis = ema(nresult, length) dev = mult * stdev(nresult, length) upper = basis + dev lower = basis - dev bbr = (nresult - lower)/(upper - lower) ////////////////INPUTS/////////////////// lambda = input(defval = 1000, type = input.float, title = "Smoothing Factor (Lambda)", minval = 1) leng = input(defval = 100, type = input.integer, title = "Filter Length", minval = 1) srcc = close ///////////Construct Arrays/////////////// a = array.new_float(leng, 0.0) b = array.new_float(leng, 0.0) c = array.new_float(leng, 0.0) d = array.new_float(leng, 0.0) e = array.new_float(leng, 0.0) f = array.new_float(leng, 0.0) /////////Initialize the Values/////////// //for more details visit: // https://asmquantmacro.com/2015/06/25/hodrick-prescott-filter-in-excel/ ll1 = leng-1 ll2 = leng-2 for i = 0 to ll1 array.set(a,i, lambda*(-4)) array.set(b,i, src[i]) array.set(c,i, lambda*(-4)) array.set(d,i, lambda*6 + 1) array.set(e,i, lambda) array.set(f,i, lambda) array.set(d, 0, lambda + 1.0) array.set(d, ll1, lambda + 1.0) array.set(d, 1, lambda * 5.0 + 1.0) array.set(d, ll2, lambda * 5.0 + 1.0) array.set(c, 0 , lambda * (-2.0)) array.set(c, ll2, lambda * (-2.0)) array.set(a, 0 , lambda * (-2.0)) array.set(a, ll2, lambda * (-2.0)) //////////////Solve the optimization issue///////////////////// float r = array.get(a, 0) float s = array.get(a, 1) float t = array.get(e, 0) float xmult = 0.0 for i = 1 to ll2 xmult := r / array.get(d, i-1) array.set(d, i, array.get(d, i) - xmult * array.get(c, i-1)) array.set(c, i, array.get(c, i) - xmult * array.get(f, i-1)) array.set(b, i, array.get(b, i) - xmult * array.get(b, i-1)) xmult := t / array.get(d, i-1) r := s - xmult*array.get(c, i-1) array.set(d, i+1, array.get(d, i+1) - xmult * array.get(f, i-1)) array.set(b, i+1, array.get(b, i+1) - xmult * array.get(b, i-1)) s := array.get(a, i+1) t := array.get(e, i) xmult := r / array.get(d, ll2) array.set(d, ll1, array.get(d, ll1) - xmult * array.get(c, ll2)) x = array.new_float(leng, 0) array.set(x, ll1, (array.get(b, ll1) - xmult * array.get(b, ll2)) / array.get(d, ll1)) array.set(x, ll2, (array.get(b, ll2) - array.get(c, ll2) * array.get(x, ll1)) / array.get(d, ll2)) for j = 0 to leng-3 i = leng-3 - j array.set(x, i, (array.get(b,i) - array.get(f,i)*array.get(x,i+2) - array.get(c,i)*array.get(x,i+1)) / array.get(d, i)) //////////////Construct the output/////////////////// o5 = array.get(x,0) ////////////////////Plottingd/////////////////////// TimeFrame = input('1', type=input.resolution) start = security(syminfo.tickerid, TimeFrame, time) //------------------------------------------------ newSession = iff(change(start), 1, 0) //------------------------------------------------ vwapsum = 0.0 vwapsum := iff(newSession, o5*volume, vwapsum[1]+o5*volume) volumesum = 0.0 volumesum := iff(newSession, volume, volumesum[1]+volume) v2sum = 0.0 v2sum := iff(newSession, volume*o5*o5, v2sum[1]+volume*o5*o5) myvwap = vwapsum/volumesum dev2 = sqrt(max(v2sum/volumesum - myvwap*myvwap, 0)) Coloring=close>myvwap?color.green:color.red av=myvwap showBcol = input(false, type=input.bool, title="Show barcolors") showPrevVWAP = input(false, type=input.bool, title="Show previous VWAP close") prevwap = 0.0 prevwap := iff(newSession, myvwap[1], prevwap[1]) nprevwap= normalize(prevwap, 0, 1) l1= input(20, minval=1) src2 = close mult1 = input(2.0, minval=0.001, maxval=50, title="StdDev") basis1 = sma(src2, l1) dev1 = mult1 * stdev(src2, l1) upper1 = basis1 + dev1 lower1 = basis1 - dev1 bbr1 = (src - lower1)/(upper1 - lower1) az = plot(bbr, "Δ(OBV-PVT)", color.rgb(0,153,0,0), style=plot.style_columns) bz = plot(bbr1, "BB%B", color.rgb(0,125,125,50), style=plot.style_columns) fill(az, bz, color=color.white) deltabbr = bbr1 - bbr oneline = hline(1) twoline = hline(1.2) zline = hline(0) xx = input(.3) yy = input(.7) zz = input(-1) xxx = hline(xx) yyy = hline(yy) zzz = hline(zz) fill(oneline, twoline, color=color.red, title="Sell Zone") fill(yyy, oneline, color=color.orange, title="Slightly Overbought") fill(yyy, zline, color=color.white, title="DO NOTHING ZONE") fill(zzz, zline, color=color.green, title="GO LONG ZONE") l20 = crossover(deltabbr, 0) l30 = crossunder(deltabbr, 0) l40 = crossover(o5, 0) l50 = crossunder(o5, 0) z1 = bbr1 >= 1 z2 = bbr1 < 1 and bbr1 >= .7 z3 = bbr1 < .7 and bbr1 >= .3 z4 = bbr1 < .3 and bbr1 >= 0 z5 = bbr1 < 0 a1 = bbr >= 1 a2 = bbr < 1 and bbr >= .7 a4 = bbr < .3 and bbr >= 0 a5 = bbr < 0 b4 = deltabbr < .3 and deltabbr >= 0 b5 = deltabbr < 0 c4 = o5 < .3 and o5 >= 0 c5 = o5 < 0 b1 = deltabbr >= 1 b2 = deltabbr < 1 and o5 >= .7 c1 = o5 >= 1 c2 = o5 < 1 and o5 >= .7 /// n = input(16,"Period") H = highest(hl2,n) L = lowest(hl2,n) hi = H[1] lo = L[1] up = high>hi dn = low<lo lowerbbh = lowest(10)[1] bbh = (low == open ? open < lowerbbh ? open < close ? close > ((high[1] - low[1]) / 2) + low[1] :na : na : na) plot(normalize(av,-1,1), linewidth=2, title="Trendline", color=color.yellow) long5 = close < av and av[0] > av[1] sell5 = close > av cancel = false if open >= high[1] cancel = true long = (long5 or z5 or a5) and (icreturn or bbh or up) sell = ((z1 or a1) or (l40 and l20)) and (icreturn or dn) and (c1 or b1) short = ((z1 or z2 or a1 or sell5) and (l40 or l20)) and icreturn buy= (z5 or z4 or a5 or long5) and (icreturn or dn) plotshape(long and not sell ? -0.5 : na, title="Long", location=location.absolute, style=shape.circle, size=size.tiny, color=color.green, transp=0) plotshape(short and not sell? 1 : na, title="Short", location=location.absolute, style=shape.circle, size=size.tiny, color=color.red, transp=0) if (inDateRange) strategy.entry("long", true, when = long ) if (inDateRange) and (strategy.position_size > 0) strategy.close_all(when = sell or cancel) if (inDateRange) strategy.entry("short", false, when = short ) if (inDateRange) and (strategy.position_size < 0) strategy.close_all(when = buy)