Les ressources ont été chargées... Je charge...

Stratégie de suivi des risques à faible pyramide

Auteur:ChaoZhang est là., Date: 2023-12-22 12:56:36 Je suis désolé
Les étiquettes:

img

Cette stratégie identifie les points faibles potentiels dans le mouvement des prix grâce à une combinaison de différents indicateurs et construit progressivement des positions par pyramide pour réduire le risque.

Vue d'ensemble de la stratégie

La stratégie utilise d'abord la différence entre le RSI et l'EMA RSI pour identifier les bas de prix potentiels. Pour filtrer les faux signaux, la stratégie combine également la moyenne mobile et l'indicateur stochastique multi-temporel pour la confirmation. Une fois que le signal de point bas est confirmé, les positions longues seront progressivement construites à des prix légèrement plus bas à partir de ce point par pyramiding. La stratégie permet d'ouvrir jusqu'à 12 ordres de suivi, la taille de chaque ordre augmentant en séquence, ce qui peut effectivement diversifier les risques.

Principe de stratégie

La stratégie est composée de trois modules principaux: identification des points faibles, suivi des pyramides et contrôle des risques.

Lemodule d'identification du point basL'indicateur de moyenne mobile est utilisé pour identifier les bas de prix potentiels. Pour améliorer la précision, l'indicateur de moyenne mobile et les indicateurs stochastiques multi-temporels sont introduits pour le filtrage des signaux.

Lemodule de suivi de la pyramideLe suivi pyramidale permet d'atteindre une moyenne de 12 ordres de suivi. La stratégie de suivi pyramidale permet d'atteindre une moyenne de 12 ordres de suivi. La stratégie de suivi pyramidale permet d'atteindre une moyenne de 12 ordres de suivi.

Lemodule de contrôle des risquesLe premier est le stop loss global basé sur le prix le plus élevé au cours des dernières périodes. Tous les ordres suivront ce stop loss. Le second est le paramètre de prise de profit indépendant pour chaque ordre, qui permet de fermer l'ordre en fonction d'un certain pourcentage du prix d'entrée. Le troisième est le stop loss global basé sur le pourcentage du capital du compte, qui est la méthode de contrôle du risque la plus forte.

Les avantages de la stratégie

  • Le suivi pyramidale réduit le risque des commandes individuelles tout en diversifiant le risque global
  • La combinaison d'indicateurs améliore la précision de l'identification du point bas
  • Les fonctions de stop-loss global, de prise de profit et de trailing stop contrôlent efficacement le risque
  • Le compte est protégé contre les pertes importantes par le stockage des pertes
  • Les paramètres peuvent être ajustés pour équilibrer risque et récompense

Risques stratégiques

  • L'identification du point bas a encore certaines limites, peut manquer le meilleur point d'entrée ou entrer dans un faux signal
  • Face à un marché défavorable lors de l'ajout d'ordres peut augmenter les pertes
  • Nécessite une période relativement longue pour refléter l'avantage
  • Un réglage inapproprié des paramètres peut entraîner un contrôle insuffisant des risques

Pour réduire les risques susmentionnés, certains aspects peuvent être optimisés:

  1. Modifier ou ajouter des indicateurs pour améliorer la précision de l'identification du point bas
  2. Optimiser le nombre d'ordres, les intervalles, le pourcentage de profit, etc. pour réduire le risque par ordre
  3. Réduire modérément le niveau de stop loss pour protéger les bénéfices
  4. Testez différents produits avec une bonne liquidité et une forte fluctuation

Optimisation de la stratégie

Il reste encore des possibilités d'optimisation de cette stratégie:

  1. Essayez d'introduire des techniques plus avancées comme l'apprentissage automatique pour l'identification des points bas
  2. Ajustez dynamiquement la quantité d'ordre, le niveau de stop loss, etc. en fonction des conditions du marché
  3. Ajouter un mécanisme de blocage des pertes pour éviter l'expansion des pertes
  4. Ajouter un mécanisme de réentrée
  5. Optimiser les paramètres pour les actions et les crypto-monnaies

Résumé

Cette stratégie réduit efficacement les risques des ordres individuels grâce à l'approche de suivi pyramidale, et les fonctions globales de stop loss, take profit, trailing stop jouent également un très bon rôle de contrôle des risques.


/*backtest
start: 2022-12-15 00:00:00
end: 2023-12-21 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © A3Sh
//@version=5

// Strategy that finds potential lows in the price action and spreads the risk by entering multiple positions at these lows.
// The low is detected based on the difference between MTF RSI and EMA based RSI, Moving Average and MTF Stochastic indicators.
// The size of each next position that is entered is multiplied by the sequential number of the position.
// Each separate position can exit when a specified take profit is triggered and re-open when detecting a new potential low.
// All positions are closed when the price action crosses over the dynamic blue stop level line.

// This strategy combines open-source code developed by fellow Tradingview community members: 
// The Lowfinder code is developed by RafaelZioni
// https://www.tradingview.com/script/GzKq2RVl-Low-finder/
// Both the MTF RSI code and the MTF Stochastic code are adapted from the MTFindicators libary written by Peter_O
// https://www.tradingview.com/script/UUVWSpXR-MTFindicators/

// The Stop Level calculation is inspired by the syminfo-mintick tutorial on Kodify.net
// https://kodify.net/tradingview/info/syminfo-mintick/

strategy("LowFinder_PyraMider", 
         overlay=true, pyramiding=99, 
         precision=2,
         initial_capital=10000, 
         default_qty_type=strategy.percent_of_equity, 
         default_qty_value=10,
         commission_type=strategy.commission.percent, 
         commission_value=0.06,
         slippage=1
         )


// Backtest Window
start_time   = input(defval=timestamp("01 April 2021 20:00"), group = "Backtest Window", title="Start Time")
end_time     = input(defval=timestamp("01 Aug 2030 20:00"),   group = "Backtest Window", title="End Time")
window() => true


// Inputs
portfolio_size  = input.float  (100,         group = 'Risk - Portfolio',       title = 'Portfolio %', step=1.0) / 100
leverage        = input.int    (1,           group = 'Risk - Portfolio',       title = 'Leverage', minval = 1)
q_mode          = input.string ('multiply',  group = 'Risk - Order Size',      title = 'Order Size Mode', options = ['base', 'multiply'], tooltip = 'Base mode: the base quantiy for each sequential order. Multiply mode: each quantity is multiplied by order number')
q_mode_m        = input.int    (1,           group = 'Risk - Order Size',      title = 'Order Size Divider (Multiply Mode)',  tooltip = 'Divide Multiply by this number to lower the sequential order sizes')
fixed_q         = input.bool   (false,       group = 'Risk - Order Size',      title = 'Fixed Order Size',     inline = '01', tooltip = 'Use with caution! Overrides all Risk calculations')
amount_q        = input.float  (1,           group = 'Risk - Order Size',      title = '. . Base Currency:',   inline = '01')
sl_on           = input.bool   (false,       group = 'Risk - Stop Loss',       title = 'StopLoss of',          inline = '03')
stopLoss        = input.float  (1.5,         group = 'Risk - Stop Loss',       title = '',   step=0.1,         inline = '03') / 100
sl_mode         = input.string ('equity',    group = 'Risk - Stop Loss',       title = '% of',  options = ['avg_price', 'equity'], inline = '03')
stop_len        = input.int    (100,         group = 'Risk - Stop Level',      title = 'Stop Level Length', tooltip = 'Lookback most recent highest high')
stop_deviation  = input.float  (0.3,         group = 'Risk - Stop Level',      title = 'Deviatation % above Stop Level', step=0.1) / 100
cond2_toggle    = input.bool   (true ,       group = 'Risk - Take Profit',     title = 'Take Profit/Trailing Stop', inline = '04')
tp_all          = input.float  (1.0,         group = 'Risk - Take Profit',     title = '..........%', step=0.1,     inline = '04') / 100
tp_on           = input.bool   (true,        group = 'Risk - Take Profit',     title = 'Exit Crossover Take Profit and .....', inline = '02')
exit_mode       = input.string ('stoplevel', group = 'Risk - Take Profit',     title = '',   options = ['close', 'stoplevel'], inline = '02')
takeProfit      = input.float  (10.0,        group = 'Risk - Take Profit',     title = 'Take Profit % per Order', tooltip = 'Each separate order exits when hit', step=0.1)
posCount        = input.int    (12,          group = 'Pyramiding Settings',    title = 'Max Number of Orders')
next_entry      = input.float  (0.2,         group = 'Pyramiding Settings',    title = 'Next Order % below Avg. Price', step=0.1)
oa_lookback     = input.int    (0,           group = 'Pyramiding Settings',    title = 'Next Order after X candles', tooltip = 'Prevents opening too much orders in a Row')
len_rsi         = input.int    (5,           group = 'MTF LowFinder Settings', title = 'Lookback of RSI')
mtf_rsi         = input.int    (1,           group = 'MTF LowFinder Settings', title = 'Higher TimeFrame Multiplier RSI',  tooltip='Multiplies the current timeframe by specified value')
ma_length       = input.int    (26,          group = 'MTF LowFinder Settings', title = 'MA Length / Sensitivity')
new_entry       = input.float  (0.1,         group = 'MTF LowFinder Settings', title = 'First Order % below Low',step=0.1, tooltip = 'Open % lower then the found low')/100
ma_signal       = input.int    (100,         group = 'Moving Average Filter',  title = 'Moving Average Length')
periodK         = input.int    (14,          group = 'MTF Stochastic Filter',  title = 'K',      minval=1)
periodD         = input.int    (3,           group = 'MTF Stochastic Filter',  title = 'D',      minval=1)
smoothK         = input.int    (3,           group = 'MTF Stochastic Filter',  title = 'Smooth', minval=1)
lower           = input.int    (30,          group = 'MTF Stochastic Filter',  title = 'MTF Stoch Filter (above gets filtered)')
mtf_stoch       = input.int    (10,          group = 'MTF Stochastic Filter',  title = 'Higher TimeFrame Multiplier', tooltip='Multiplies the current timeframe by specified value')
avg_on          = input.bool   (true,        group = 'Plots',                  title = 'Plot Average Price')
plot_ma         = input.bool   (false,       group = 'Plots',                  title = 'Plot Moving Average')
plot_ts         = input.bool   (false,       group = 'Plots',                  title = 'Plot Trailing Stop Level')


// variables //
var entry_price     = 0.0    // The entry price of the first entry
var previous_entry  = 0.0    // Stores the price of the previous entry
var iq              = 0.0    // Inititial order quantity before risk calculation
var nq              = 0.0    // Updated new quantity after the loop
var oq              = 0.0    // Old quantity at the beginning or the loop
var q               = 0.0    // Final calculated quantity used as base order size
var int order_after = 0



// Order size calaculations // 

// Order size based on max amount of pyramiding orders or fixed by user input ///
// Order size calculation based on 'base' mode or ' multiply' mode //
if fixed_q
    q := amount_q
else if q_mode == 'multiply'
    iq := (math.abs(strategy.equity * portfolio_size  / posCount) / open) * leverage
    oq := iq
    for i = 0 to posCount
        nq := oq + (iq * ( i/ q_mode_m + 1))
        oq := nq 
    q := (iq  * posCount /  oq) * iq

else
    q := (math.abs(strategy.equity * portfolio_size  / posCount) / open) * leverage

// Function to calcaulate final order size based on order size modes and round the result with 1 decimal //
quantity_mode(index,string q_mode) =>
    q_mode == 'base' ? math.round(q,1) : q_mode == 'multiply' ? math.round(q * (index/q_mode_m  + 1),1) : na



// LowFinder Calculations //
// MTF RSI by Peter_O //
rsi_mtf(float source, simple int mtf,simple int len) =>
    change_mtf=source-source[mtf]
    up_mtf = ta.rma(math.max(change_mtf, 0), len*mtf)
    down_mtf = ta.rma(-math.min(change_mtf, 0), len*mtf)
    rsi_mtf = down_mtf == 0 ? 100 : up_mtf == 0 ? 0 : 100 - (100 / (1 + up_mtf / down_mtf))

// Lowfinder by RafaelZioni //
vrsi = rsi_mtf(close,mtf_rsi,len_rsi)

pp=ta.ema(vrsi,ma_length)
dd=(vrsi-pp)*5
cc=(vrsi+dd+pp)/2

lows=ta.crossover(cc,0) 



// MTF Stoch Calcualation // MTF Stoch adapted from  Peter_O //
stoch_mtfK(source, mtf, len) =>

    k = ta.sma(ta.stoch(source, high, low, periodK * mtf), smoothK * mtf)
    
stoch_mtfD(source, mtf, len) =>

    k = ta.sma(ta.stoch(source, high, low, periodK * mtf), smoothK * mtf)
    d = ta.sma(k, periodD * mtf)
    
mtfK = stoch_mtfK(close, mtf_stoch, periodK)
mtfD = stoch_mtfD(close, mtf_stoch, periodK)



// Open next position % below average position price //
below_avg = close < (strategy.position_avg_price * (1 - (next_entry / 100)))



// Moving Average Filter //
moving_average_signal = ta.sma(close, ma_signal)
plot (plot_ma ? moving_average_signal : na, title = 'Moving Average', color = color.rgb(154, 255, 72))



// Buy Signal //
buy_signal = lows and close < moving_average_signal and mtfK < lower
// First Entry % Below lows //
if buy_signal
    entry_price := close * (1 - new_entry)



// Plot Average Price of Position//
plot (avg_on  ? strategy.position_avg_price : na, title = 'Average Price', style = plot.style_linebr, color = color.new(color.white,0), linewidth = 1)



// Take profit per Open Order //
take_profit_price = close * takeProfit / 100 / syminfo.mintick



// Calculate different Stop Level conditions to exit All //

// Stop Level Caculation //
stop_long1_level = ta.highest (high, stop_len)[1]  * (1 + stop_deviation)
stop_long2_level = ta.highest (high, stop_len)[2]  * (1 + stop_deviation)
stop_long3_level = ta.highest (high, stop_len)[3]  * (1 + stop_deviation)
stop_long4_level = ta.highest (high, stop_len)[1]  * (1 - 0.008) 
// Stop triggers //
stop_long1 = ta.crossover(close,stop_long1_level)
stop_long2 = ta.crossover(close,stop_long2_level)
stop_long4 = ta.crossunder(close,stop_long4_level)
// Exit Conditions, cond 1 only Stop Level, cond2 Trailing Stop option //
exit_condition_1 = close < strategy.position_avg_price ? stop_long1 : close > strategy.position_avg_price ? stop_long2 : na
exit_condition_2 = close < strategy.position_avg_price * (1 + tp_all) ? stop_long2 : 
                   close > strategy.position_avg_price * (1 + tp_all) ? stop_long4 :
                   close < strategy.position_avg_price ? stop_long1 : na
// Switch between conditions //
exit_conditions = cond2_toggle ? exit_condition_2 : exit_condition_1

// Exit when take profit //
ex_m = exit_mode == 'close' ? close : stop_long2_level
tp_exit = ta.crossover(ex_m, strategy.position_avg_price * (1 + tp_all)) and close > strategy.position_avg_price * 1.002

// Plot stoplevel, take profit level //
plot_stop_level    = strategy.position_size > 0 ? stop_long2_level : na
plot_trailing_stop = cond2_toggle and plot_ts and strategy.position_size > 0 and close > strategy.position_avg_price * (1 + tp_all) ? stop_long4_level : na

plot(plot_stop_level,    title = 'Stop Level',    style=plot.style_linebr, color = color.new(#41e3ff, 0), linewidth = 1)
plot(plot_trailing_stop, title = 'Trailing Stop', style=plot.style_linebr, color = color.new(#4cfca4, 0), linewidth = 1)

plot_tp_level = cond2_toggle and strategy.position_size > 0 ? strategy.position_avg_price * (1 + tp_all) : na
plot(plot_tp_level, title = 'Take Profit Level', style=plot.style_linebr, color = color.new(#ff41df, 0), linewidth = 1)



// Calculate Stop Loss based on equity and average price //
loss_equity = ((strategy.position_size * strategy.position_avg_price) - (strategy.equity * stopLoss)) / strategy.position_size
loss_avg_price = strategy.position_avg_price * (1 - stopLoss)
stop_loss = sl_mode == 'avg_price' ? loss_avg_price : loss_equity
plot(strategy.position_size > 0  and sl_on ? stop_loss : na, title = 'Stop Loss', color=color.new(color.red,0),style=plot.style_linebr, linewidth = 1)



// Enter first position //
if ta.crossunder(close,entry_price) and window() and strategy.position_size == 0
    strategy.entry('L_1', strategy.long, qty = math.round(q,1), comment = '+' + str.tostring(math.round(q,1)))
    previous_entry := close


// Enter next pyramiding positions //
if buy_signal and window() and strategy.position_size > 0 and below_avg
    order_after := order_after + 1
    for i = 1 to strategy.opentrades
        entry_comment = '+' + str.tostring((quantity_mode(i,q_mode))) // Comment with variable //
        if strategy.opentrades == i and i < posCount and order_after > oa_lookback
            entry_price := close
            entry_id = 'L_' + str.tostring(i + 1) 
            strategy.entry(id = entry_id, direction=strategy.long, limit=entry_price, qty= quantity_mode(i,q_mode), comment = entry_comment)
            previous_entry := entry_price
            order_after := 0


// Exit per Position //
if strategy.opentrades > 0 and window() 
    for i = 0 to strategy.opentrades 
        exit_comment = '-' + str.tostring(strategy.opentrades.size(i))
        exit_from = 'L_' + str.tostring(i + 1)
        exit_id = 'Exit_' + str.tostring(i + 1)
        strategy.exit(id= exit_id, from_entry= exit_from, profit = take_profit_price, comment = exit_comment)
            

// Exit All //
if exit_conditions or (tp_exit and tp_on and cond2_toggle) and window()
    strategy.close_all('Exti All')
    entry_price := 0

if ta.crossunder(close,stop_loss)  and sl_on and window()
    strategy.close_all('StopLoss')
    entry_price := 0
    





Plus de