Les ressources ont été chargées... Je charge...

Stratégie de négociation de crypto-monnaie à haute fréquence combinant TrippleMACD Crossover et indice de force relative

Auteur:ChaoZhang est là., Date: 2024-03-22 15:41:46 Je vous en prie.
Les étiquettes:

img

Résumé

Cet article présente une stratégie de négociation de crypto-monnaie à haute fréquence qui combine le croisement TrippleMACD avec l'indice de force relative (RSI). La stratégie utilise trois ensembles d'indicateurs MACD avec des paramètres différents et en moyenne leurs lignes de signal, tout en incorporant également l'indicateur RSI pour déterminer les temps d'achat et de vente optimaux.

Principe de stratégie

Le noyau de cette stratégie est d'utiliser trois ensembles d'indicateurs MACD avec des paramètres différents pour capturer les signaux de tendance sur différentes échelles de temps. En faisant la moyenne des lignes de signal de ces trois indicateurs MACD, le bruit peut être efficacement lissé, fournissant des signaux de trading plus fiables.

En outre, la stratégie utilise une régression linéaire pour identifier les phases de consolidation sur le marché. En calculant le rapport entre la longueur des ombres supérieures et inférieures et la longueur du corps des bougies, on peut déterminer si le marché actuel est en état de consolidation. Si la longueur des ombres supérieures et inférieures est plus du double de la longueur du corps, le marché est considéré comme étant en phase de consolidation et la stratégie évitera les transactions pendant cette période.

Analyse des avantages

  1. Analyse multi-temporielle: en utilisant trois ensembles d'indicateurs MACD avec des paramètres différents, la stratégie peut capturer les signaux de tendance sur diverses échelles de temps, améliorant ainsi la précision et la fiabilité des transactions.

  2. Lissage du signal: la moyenne des lignes de signal des trois indicateurs MACD élimine efficacement le bruit, évitant ainsi les signaux trompeurs pouvant être générés par un seul indicateur.

  3. Confirmation de tendance: l'incorporation de l'indicateur RSI pour confirmer la force des tendances haussières améliore encore la fiabilité des signaux de trading.

  4. Identification de la consolidation: l'utilisation de la régression linéaire pour identifier les phases de consolidation sur le marché permet à la stratégie d'éviter les transactions dans des conditions de marché instables, ce qui réduit le risque de la stratégie.

  5. Commerce automatisé: la stratégie est conçue pour la négociation automatisée sur une période d'une minute, permettant des réponses rapides aux changements du marché et une exécution efficace des transactions.

Analyse des risques

  1. Optimisation des paramètres: la stratégie implique plusieurs paramètres, tels que les périodes de ligne rapide et lente des trois indicateurs MACD et la période de l'indicateur RSI. La sélection de ces paramètres a un impact significatif sur la performance de la stratégie. Si les paramètres ne sont pas correctement optimisés, la performance de la stratégie peut diminuer.

  2. Risque de suradaptation: la stratégie peut bien fonctionner sur des données historiques spécifiques, mais peut ne pas s'adapter aux changements du marché dans l'application réelle, ce qui conduit à l'échec de la stratégie.

  3. Événements de cygne noir: la stratégie repose principalement sur des indicateurs techniques et peut ne pas répondre de manière adéquate à des événements fondamentaux importants, ce qui pourrait entraîner une mauvaise performance dans des conditions de marché extrêmes.

Direction de l'optimisation

  1. Ajustement dynamique des paramètres: ajuster dynamiquement les paramètres de la stratégie, tels que les périodes de ligne rapide et lente des indicateurs MACD et la période de l'indicateur RSI, en fonction des changements des conditions du marché afin de s'adapter aux différents environnements du marché.

  2. Incorporer des indicateurs supplémentaires: en plus des indicateurs MACD et RSI existants, envisagez d'incorporer d'autres indicateurs techniques, tels que les bandes de Bollinger et les moyennes mobiles, afin d'améliorer encore la précision et la fiabilité des signaux de négociation.

  3. Optimisation de la gestion des risques: mettre en œuvre des mesures de gestion des risques plus complètes dans la stratégie, telles que le stop-loss dynamique et la gestion des positions, afin de réduire le risque global de la stratégie.

  4. Optimisation de l'apprentissage automatique: Utiliser des algorithmes d'apprentissage automatique, tels que les réseaux de neurones et les machines vectorielles de support, pour optimiser les paramètres et les règles de trading de la stratégie, améliorant ainsi l'adaptabilité et la robustesse de la stratégie.

Conclusion

Cet article présente une stratégie de trading de crypto-monnaie à haute fréquence qui combine le croisement TrippleMACD avec l'indicateur RSI. La stratégie utilise trois ensembles d'indicateurs MACD avec différents paramètres et l'indicateur RSI pour générer des signaux de trading fiables tout en utilisant la régression linéaire pour identifier les phases de consolidation sur le marché, en évitant les transactions pendant les conditions de marché agitées.


/*backtest
start: 2024-02-01 00:00:00
end: 2024-02-29 23:59:59
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
//indicator("Triplle",shorttitle="Triplle MACD", overlay=true, scale = scale.none)
//indicator("Triplle","TrippleMACD",true)
strategy(title="TrippleMACD", shorttitle="TrippleMACD + RSI strategy", format=format.price, precision=4, overlay=true)

// RSI 
ma(source, length, type) =>
    switch type
        "SMA" => ta.sma(source, length)
        "Bollinger Bands" => ta.sma(source, length)
        "EMA" => ta.ema(source, length)
        "SMMA (RMA)" => ta.rma(source, length)
        "WMA" => ta.wma(source, length)
        "VWMA" => ta.vwma(source, length)

rsiLengthInput = input.int(14, minval=1, title="RSI Length", group="RSI Settings")
rsiSourceInput = input.source(close, "Source", group="RSI Settings")
maTypeInput = input.string("SMA", title="MA Type", options=["SMA", "Bollinger Bands", "EMA", "SMMA (RMA)", "WMA", "VWMA"], group="MA Settings")
maLengthInput = input.int(14, title="MA Length", group="MA Settings")
bbMultInput = input.float(2.0, minval=0.001, maxval=50, title="BB StdDev", group="MA Settings")
showDivergence = input.bool(false, title="Show Divergence", group="RSI Settings")

up = ta.rma(math.max(ta.change(rsiSourceInput), 0), rsiLengthInput)
down = ta.rma(-math.min(ta.change(rsiSourceInput), 0), rsiLengthInput)
rsi = down == 0 ? 100 : up == 0 ? 0 : 100 - (100 / (1 + up / down))
rsiMA = ma(rsi, maLengthInput, maTypeInput)
isBB = maTypeInput == "Bollinger Bands"

//rsiPlot = plot(rsi, "RSI", color=#7E57C2)
//plot(rsiMA, "RSI-based MA", color=color.yellow)
//rsiUpperBand = hline(70, "RSI Upper Band", color=#787B86)
//midline = hline(50, "RSI Middle Band", color=color.new(#787B86, 50))
//rsiLowerBand = hline(30, "RSI Lower Band", color=#787B86)
//fill(rsiUpperBand, rsiLowerBand, color=color.rgb(126, 87, 194, 90), title="RSI Background Fill")
bbUpperBand = plot(isBB ? rsiMA + ta.stdev(rsi, maLengthInput) * bbMultInput : na, title = "Upper Bollinger Band", color=color.green)
bbLowerBand = plot(isBB ? rsiMA - ta.stdev(rsi, maLengthInput) * bbMultInput : na, title = "Lower Bollinger Band", color=color.green)
//fill(bbUpperBand, bbLowerBand, color= isBB ? color.new(color.green, 90) : na, title="Bollinger Bands Background Fill")

//midLinePlot = plot(50, color = na, editable = false, display = display.none)
//fill(rsiPlot, midLinePlot, 100, 70, top_color = color.new(color.green, 0), bottom_color = color.new(color.green, 100),  title = "Overbought Gradient Fill")
//fill(rsiPlot, midLinePlot, 30,  0,  top_color = color.new(color.red, 100), bottom_color = color.new(color.red, 0),      title = "Oversold Gradient Fill")

// Divergence
lookbackRight = 5
lookbackLeft = 5
rangeUpper = 60
rangeLower = 5
bearColor = color.red
bullColor = color.green
textColor = color.white
noneColor = color.new(color.white, 100)

plFound = na(ta.pivotlow(rsi, lookbackLeft, lookbackRight)) ? false : true
phFound = na(ta.pivothigh(rsi, lookbackLeft, lookbackRight)) ? false : true
_inRange(cond) =>
	bars = ta.barssince(cond == true)
	rangeLower <= bars and bars <= rangeUpper

//------------------------------------------------------------------------------
// Regular Bullish
// rsi: Higher Low

rsiHL = rsi[lookbackRight] > ta.valuewhen(plFound, rsi[lookbackRight], 1) and _inRange(plFound[1])

// Price: Lower Low

priceLL = low[lookbackRight] < ta.valuewhen(plFound, low[lookbackRight], 1)
bullCondAlert = priceLL and rsiHL and plFound
bullCond = showDivergence and bullCondAlert

// plot(
//      plFound ? rsi[lookbackRight] : na,
//      offset=-lookbackRight,
//      title="Regular Bullish",
//      linewidth=2,
//      color=(bullCond ? bullColor : noneColor)
//      )

// plotshape(
// 	 bullCond ? rsi[lookbackRight] : na,
// 	 offset=-lookbackRight,
// 	 title="Regular Bullish Label",
// 	 text=" Bull ",
// 	 style=shape.labelup,
// 	 location=location.absolute,
// 	 color=bullColor,
// 	 textcolor=textColor
// 	 )

//------------------------------------------------------------------------------
// Regular Bearish
// rsi: Lower High

rsiLH = rsi[lookbackRight] < ta.valuewhen(phFound, rsi[lookbackRight], 1) and _inRange(phFound[1])

// Price: Higher High

priceHH = high[lookbackRight] > ta.valuewhen(phFound, high[lookbackRight], 1)

bearCondAlert = priceHH and rsiLH and phFound
bearCond = showDivergence and bearCondAlert

// plot(
// 	 phFound ? rsi[lookbackRight] : na,
// 	 offset=-lookbackRight,
// 	 title="Regular Bearish",
// 	 linewidth=2,
// 	 color=(bearCond ? bearColor : noneColor)
// 	 )

// plotshape(
// 	 bearCond ? rsi[lookbackRight] : na,
// 	 offset=-lookbackRight,
// 	 title="Regular Bearish Label",
// 	 text=" Bear ",
// 	 style=shape.labeldown,
// 	 location=location.absolute,
// 	 color=bearColor,
// 	 textcolor=textColor
// 	 )
// END RSI

// Getting inputs
stopLuse          = input(1.040)
fast_length = input(title = "Fast Length", defval = 5)
slow_length = input(title = "Slow Length", defval = 8)
fast_length2 = input(title = "Fast Length2", defval = 13)
slow_length2 = input(title = "Slow Length2", defval = 21)
fast_length3 = input(title = "Fast Length3", defval = 34)
slow_length3 = input(title = "Slow Length3", defval = 144)
fast_length4 = input(title = "Fast Length3", defval = 68)
slow_length4 = input(title = "Slow Length3", defval = 288)
src = input(title = "Source", defval = close)
signal_length2 = input.int(title="Signal Smoothing", minval = 1, maxval = 200, defval = 11)
signal_length = input.int(title = "Signal Smoothing",  minval = 1, maxval = 50, defval = 9)
sma_source = input.string(title = "Oscillator MA Type",  defval = "EMA", options = ["SMA", "EMA"])
sma_signal = input.string(title = "Signal Line MA Type", defval = "EMA", options = ["SMA", "EMA"])
// Calculating
fast_ma = sma_source == "SMA" ? ta.sma(src, fast_length) : ta.ema(src, fast_length)
slow_ma = sma_source == "SMA" ? ta.sma(src, slow_length) : ta.ema(src, slow_length)

fast_ma2 = sma_source == "SMA2" ? ta.sma(src, fast_length2) : ta.ema(src, fast_length2)
slow_ma2 = sma_source == "SMA2" ? ta.sma(src, slow_length2) : ta.ema(src, slow_length2)

fast_ma3 = sma_source == "SMA3" ? ta.sma(src, fast_length3) : ta.ema(src, fast_length3)
slow_ma3 = sma_source == "SMA3" ? ta.sma(src, slow_length3) : ta.ema(src, slow_length3)

fast_ma4 = sma_source == "SMA3" ? ta.sma(src, fast_length3) : ta.ema(src, fast_length3)
slow_ma4 = sma_source == "SMA3" ? ta.sma(src, slow_length3) : ta.ema(src, slow_length3)

macd = fast_ma - slow_ma
macd2 = fast_ma2 - slow_ma2
macd3 = fast_ma3 - slow_ma3
macd4 = fast_ma4 - slow_ma4

signal = sma_signal == "SMA" ? ta.sma(macd, signal_length) : ta.ema(macd, signal_length)
signal2 = sma_signal == "SMA" ? ta.sma(macd2, signal_length) : ta.ema(macd2, signal_length)
signal3 = sma_signal == "SMA" ? ta.sma(macd3, signal_length) : ta.ema(macd3, signal_length)
signal4 = sma_signal == "SMA" ? ta.sma(macd4, signal_length) : ta.ema(macd4, signal_length)
//hist = (macd + macd2 + macd3)/1 - (signal + signal2 + signal3)/1
hist = (macd + macd2 + macd3 + macd4)/4 - (signal + signal2 + signal3 + signal4)/4
signal5 = (signal + signal2 + signal3)/3

sma_signal2 = input.bool(title="Simple MA (Signal Line)", defval=true)

lin_reg = input.bool(title="Lin Reg", defval=true)
linreg_length = input.int(title="Linear Regression Length", minval = 1, maxval = 200, defval = 11)

bopen = lin_reg ? ta.linreg(open, linreg_length, 0) : open
bhigh = lin_reg ? ta.linreg(high, linreg_length, 0) : high
blow = lin_reg ? ta.linreg(low, linreg_length, 0) : low
bclose = lin_reg ? ta.linreg(close, linreg_length, 0) : close

shadow = (bhigh - bclose) + (bopen - blow)
body = bclose - bopen
perc = (shadow/body)
cond2 = perc >=2 and bclose+bclose[1]/2 > bopen+bopen[1]/2

r = bopen < bclose

//signal5 = sma_signal2 ? ta.sma(bclose, signal_length) : ta.ema(bclose, signal_length)
plotcandle(r ? bopen : na, r ? bhigh : na, r ? blow: na, r ? bclose : na, title="LinReg Candles", color= color.green, wickcolor=color.green, bordercolor=color.green, editable= true)
plotcandle(r ? na : bopen, r ? na : bhigh, r ? na : blow, r ? na : bclose, title="LinReg Candles", color=color.red, wickcolor=color.red, bordercolor=color.red, editable= true)
//alertcondition(hist[1] >= 0 and hist < 0, title = 'Rising to falling', message = 'The MACD histogram switched from a rising to falling state')
//alertcondition(hist[1] <= 0 and hist > 0, title = 'Falling to rising', message = 'The MACD histogram switched from a falling to rising state')

green = hist >= 0 ? (hist[1] < hist ? "G" : "GL") : (hist[1] < hist ? "RL" : "R")
Buy = green == "G" and green[1] != "G" and green[1] != "GL" and bopen < bclose and rsi < 55.0 //and not cond2
//StopBuy = (green == "R" or green == "RL" or green == "RL") and bopen > bclose and bopen[1] < bclose[1]
StopBuy = bopen > bclose and bopen[1] < bclose[1] and (green == "G" or green == "GL" or green == "R") and bopen[2] < bclose[2] and bopen[3] < bclose[3]
hists = close[3] < close[2] and close[2] < close[1]
//Buy = green == "RL" and hist[0] > -0.07 and hist[0] < 0.00 and rsi < 55.0 and hists
//StopBuy = green == "GL" or green == "R"
alertcondition(Buy, "Long","Покупка в лонг")
alertcondition(StopBuy, "StopLong","Закрытие сделки")

//hline(0, "Zero Line", color = color.new(#787B86, 50))
plot(hist + (close - (close * 0.03)), title = "Histogram", style = plot.style_line, color = (hist >= 0 ? (hist[1] < hist ? #26A69A : #B2DFDB) : (hist[1] < hist ? #FFCDD2 : #FF5252)))
plotshape(Buy ? low : na, 'Buy', shape.labelup, location.belowbar , color=color.new(#0abe40, 50), size=size.small, offset=0)
plotshape(StopBuy ? low : na, 'Buy', shape.cross, location.abovebar , color=color.new(#be0a0a, 50), size=size.small, offset=0)
plot(macd4  + (close - (close * 0.01)),   title = "MACD",   color = #2962FF)
plot(signal5 + (close - (close * 0.01)), title = "Signal", color = #FF6D00)

plotchar(cond2 , char='↓', color = color.rgb(0, 230, 119), text = "-")

if (Buy)
    strategy.entry("long", strategy.long)

// if (startShortTrade)
//     strategy.entry("short", strategy.short)

profitTarget = strategy.position_avg_price * stopLuse
strategy.exit("Take Profit", "long", limit=profitTarget)
// strategy.exit("Take Profit", "short", limit=profitTarget)

Plus de