नीति में शुल्क के लिए अपग्रेड किया गया है, इसमें बहुत सुधार हुए हैं, और आप मेरे वीक्सिट wangweibing_ustb पर संपर्क कर सकते हैं।
币安期货多币种对冲策略最近的复盘和分钟级K线回测的结果
币安多币种对冲策略的研究报告已经发了3篇,这里是第4篇。前三篇的连接,没看的一定要再看一遍,可以了解策略的成型思路,具体参数的设置和策略逻辑。
很多人还不会使用研究环境,这里有一篇简单的入门介绍:https://www.fmz.com/bbs-topic/4388
本篇文章要复盘以下最近1周的实盘情况,总结一下得失。由于爬取了最近两个月的币安期货分钟线数据,可以更新下原来1hK线的回测结果,更能说明一些参数设置的含义。
# 需要导入的库 import pandas as pd import requests import matplotlib.pyplot as plt import seaborn as sns import numpy as np %matplotlib inline
symbols = ['BTC','ETH', 'BCH', 'XRP', 'EOS', 'LTC', 'TRX', 'ETC', 'LINK', 'XLM', 'ADA', 'XMR', 'DASH', 'ZEC', 'XTZ', 'BNB', 'ATOM', 'ONT', 'IOTA', 'BAT', 'VET', 'NEO', 'QTUM', 'IOST']
分钟线数据
数据从2月21日到4月15下午两点,共77160*24条,这大大降低了我们的回测速度,回测引擎也不够高效,可以自行优化。以后有需要,我会定期追踪一下最新数据。
price_usdt = pd.read_csv('https://www.fmz.com/upload/asset/2b1fa7ab641385067ad.csv',index_col = 0) price_usdt.shape
(77160, 24)
price_usdt.index = pd.to_datetime(price_usdt.index,unit='ms') price_usdt_norm = price_usdt/price_usdt.fillna(method='bfill').iloc[0,] price_usdt_btc = price_usdt.divide(price_usdt['BTC'],axis=0) price_usdt_btc_norm = price_usdt_btc/price_usdt_btc.fillna(method='bfill').iloc[0,]
class Exchange: def __init__(self, trade_symbols, leverage=20, commission=0.00005, initial_balance=10000, log=False): self.initial_balance = initial_balance #初始的资产 self.commission = commission self.leverage = leverage self.trade_symbols = trade_symbols self.date = '' self.log = log self.df = pd.DataFrame(columns=['margin','total','leverage','realised_profit','unrealised_profit']) self.account = {'USDT':{'realised_profit':0, 'margin':0, 'unrealised_profit':0, 'total':initial_balance, 'leverage':0, 'fee':0}} for symbol in trade_symbols: self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0, 'margin':0, 'unrealised_profit':0,'fee':0} def Trade(self, symbol, direction, price, amount, msg=''): if self.date and self.log: print('%-20s%-5s%-5s%-10.8s%-8.6s %s'%(str(self.date), symbol, 'buy' if direction == 1 else 'sell', price, amount, msg)) cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount) open_amount = amount - cover_amount self.account['USDT']['realised_profit'] -= price*amount*self.commission #扣除手续费 self.account['USDT']['fee'] += price*amount*self.commission self.account[symbol]['fee'] += price*amount*self.commission if cover_amount > 0: #先平仓 self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount #利润 self.account['USDT']['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage #释放保证金 self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount self.account[symbol]['amount'] -= -direction*cover_amount self.account[symbol]['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price'] if open_amount > 0: total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount total_amount = direction*self.account[symbol]['amount']+open_amount self.account['USDT']['margin'] += open_amount*price/self.leverage self.account[symbol]['hold_price'] = total_cost/total_amount self.account[symbol]['amount'] += direction*open_amount self.account[symbol]['margin'] += open_amount*price/self.leverage self.account[symbol]['unrealised_profit'] = (price - self.account[symbol]['hold_price'])*self.account[symbol]['amount'] self.account[symbol]['price'] = price self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*price return True def Buy(self, symbol, price, amount, msg=''): self.Trade(symbol, 1, price, amount, msg) def Sell(self, symbol, price, amount, msg=''): self.Trade(symbol, -1, price, amount, msg) def Update(self, date, close_price): #对资产进行更新 self.date = date self.close = close_price self.account['USDT']['unrealised_profit'] = 0 for symbol in self.trade_symbols: if np.isnan(close_price[symbol]): continue self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount'] self.account[symbol]['price'] = close_price[symbol] self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol] self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit'] self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6) self.account['USDT']['leverage'] = round(self.account['USDT']['margin']/self.account['USDT']['total'],4)*self.leverage self.df.loc[self.date] = [self.account['USDT']['margin'],self.account['USDT']['total'],self.account['USDT']['leverage'],self.account['USDT']['realised_profit'],self.account['USDT']['unrealised_profit']]
过去一周复盘
策略代码4月10号在微信群放出,刚开始就有一批人跑起了策略2——做空超涨做多超跌,开始的三天,收益很好,回撤很低,迅速激发了大家的热情。部分人放大了杠杆,甚至是满杠杆操作,收益一天就干到了10%。策略广场也公开了大量的实盘,很多人开始不满足与保守的推荐参数,纷纷放大了交易量。4月13后但由于BNB的独立行情,策略开始回撤和横盘,如果按默认3%的trade_value来看,大概回撤了1%。但很多人由于放大的参数,导致赚的少,亏得多。这一波回撤还算及时,让大家冷静了一些。 <img src=‘https://www.fmz.com/upload/asset/29cd534a29206ac4bbd.png'>
首先看一下策略二的全币种回测,这里由于是分钟更新,Alpha参数需要调整。从实盘来看,曲线走势相符,说明我们的回测可以作为很强的参考,净值从4.13日到达净值顶点一直处于回撤和横盘阶段。
Alpha = 0.001 #price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #普通均线 price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA trade_symbols = list(set(symbols)) price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1) e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False) trade_value = 300 for row in price_usdt.iloc[-7500:].iterrows(): e.Update(row[0], row[1]) for symbol in trade_symbols: price = row[1][symbol] if np.isnan(price): continue diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]] aim_value = -trade_value*round(diff/0.01,1) now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount']) if aim_value - now_value > 0.5*trade_value: e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) if aim_value - now_value < -0.5*trade_value: e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) stragey_2a = e
(stragey_2a.df['total']/stragey_2d.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>
策略1,做空山寨币策略实现了正收益
trade_symbols = list(set(symbols)-set(['LINK','BTC','XTZ','BCH', 'ETH'])) #做空的币种 e = Exchange(trade_symbols+['BTC'],initial_balance=10000,commission=0.00075,log=False) trade_value = 2000 for row in price_usdt.iloc[-7500:].iterrows(): e.Update(row[0], row[1]) empty_value = 0 for symbol in trade_symbols: price = row[1][symbol] if np.isnan(price): continue if e.account[symbol]['value'] - trade_value < -120 : e.Sell(symbol, price, round((trade_value-e.account[symbol]['value'])/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) if e.account[symbol]['value'] - trade_value > 120 : e.Buy(symbol, price, round((e.account[symbol]['value']-trade_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) empty_value += e.account[symbol]['value'] price = row[1]['BTC'] if e.account['BTC']['value'] - empty_value < -120: e.Buy('BTC', price, round((empty_value-e.account['BTC']['value'])/price,6),round(e.account['BTC']['realised_profit']+e.account['BTC']['unrealised_profit'],2)) if e.account['BTC']['value'] - empty_value > 120: e.Sell('BTC', price, round((e.account['BTC']['value']-empty_value)/price,6),round(e.account['BTC']['realised_profit']+e.account['BTC']['unrealised_profit'],2)) stragey_1 = e
(stragey_1.df['total']/stragey_1.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>
策略2做多超跌做空超涨盈利分析
把最后账户信息打印出来,可见大部分币种都带来了利润,BNB亏损最多,这也是主要因为BNB走出了一波独立行情,上涨不少,最大偏离了0.06。
pd.DataFrame(stragey_2a.account).T.apply(lambda x:round(x,3)).sort_values(by='realised_profit')
amount fee hold_price leverage margin price \ BNB -24.871 17.459 15.527 NaN 19.308 15.701 ONT -304.260 6.416 0.394 NaN 6.000 0.397 IOST 0.000 6.066 0.003 NaN 0.000 0.003 BCH 1.353 12.002 222.789 NaN 15.073 223.920 VET -104305.964 13.095 0.004 NaN 19.295 0.004 LTC 2.180 4.727 40.800 NaN 4.448 41.540 TRX 9584.665 8.066 0.012 NaN 5.952 0.013 ADA -3573.556 7.060 0.034 NaN 6.000 0.034 NEO 0.000 3.961 7.312 NaN 0.000 7.345 ETH -0.190 6.102 160.908 NaN 1.529 160.600 BTC 0.022 8.264 6886.980 NaN 7.500 6901.600 EOS -36.526 6.573 2.464 NaN 4.500 2.488 XRP -318.302 7.951 0.188 NaN 3.000 0.189 QTUM -111.029 6.296 1.351 NaN 7.500 1.359 ATOM -225.094 16.758 2.377 NaN 26.753 2.419 ZEC 3.378 15.476 35.786 NaN 6.045 35.960 IOTA 2294.455 7.898 0.159 NaN 18.185 0.158 BAT -1083.685 17.144 0.166 NaN 8.990 0.166 XMR -3.887 7.198 54.172 NaN 10.530 54.800 XLM 2488.594 9.248 0.048 NaN 5.963 0.048 ETC -22.629 11.372 5.329 NaN 6.029 5.334 LINK 218.778 47.897 3.254 NaN 35.592 3.280 XTZ 45.616 26.661 1.973 NaN 4.500 1.968 DASH 3.721 20.171 72.810 NaN 13.545 73.320 USDT NaN 293.860 NaN 0.46 236.236 NaN realised_profit total unrealised_profit value BNB -98.445 NaN -4.336 390.497 ONT -23.734 NaN -0.913 120.913 IOST -23.349 NaN 0.000 0.000 BCH -21.968 NaN 1.530 302.990 VET -17.984 NaN -4.197 390.104 LTC -11.820 NaN 1.613 90.567 TRX -5.932 NaN 1.250 120.288 ADA -3.283 NaN 0.143 119.857 NEO 4.201 NaN 0.000 0.000 ETH 5.217 NaN 0.059 30.525 BTC 5.682 NaN 0.318 150.317 EOS 13.441 NaN -0.877 90.877 XRP 15.581 NaN -0.255 60.255 QTUM 18.775 NaN -0.888 150.888 ATOM 23.894 NaN -9.451 544.502 ZEC 35.389 NaN 0.589 121.486 IOTA 43.010 NaN -0.490 363.212 BAT 45.001 NaN -0.526 180.325 XMR 49.430 NaN -2.441 213.032 XLM 64.774 NaN 0.938 120.199 ETC 65.262 NaN -0.122 120.701 LINK 84.681 NaN 5.759 717.593 XTZ 146.921 NaN -0.228 89.772 DASH 160.891 NaN 1.896 272.790 USDT 281.775 10271.146 -10.628 NaN
# BNB的偏离情况 (price_usdt_btc_norm2.iloc[-7500:].BNB-price_usdt_btc_norm_mean[-7500:]).plot(figsize=(17,6),grid = True); #price_usdt_btc_norm_mean[-7500:].plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>
如果把BNB,ATOM亏损大户去掉的结果如何,表现好了一些,但最近依然是会回撤阶段。
Alpha = 0.001 price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA trade_symbols = list(set(symbols)-set(['BNB','ATOM'])) price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1) e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False) trade_value = 300 for row in price_usdt.iloc[-7500:].iterrows(): e.Update(row[0], row[1]) for symbol in trade_symbols: price = row[1][symbol] if np.isnan(price): continue diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]] aim_value = -trade_value*round(diff/0.01,1) now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount']) if aim_value - now_value > 0.5*trade_value: e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) if aim_value - now_value < -0.5*trade_value: e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) stragey_2b = e
(stragey_2b.df['total']/stragey_2b.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>
最近两天流行跑主流币策略,我们也回测一下这种策略。由于币种减少,trade_value适当增加4倍以对比,结果表现不错,尤其是最近回撤很小。
需要注意的是只跑主流币在更长时间的回测中是不如全币种的,回撤也更多。自己可以动手在小时线上回测以下,主要是因为币种少了资金分散,波动性反而上升。
Alpha = 0.001 price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA trade_symbols = ['ETH','LTC','EOS','XRP','BCH'] price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1) e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False) trade_value = 1200 for row in price_usdt.iloc[-7500:].iterrows(): e.Update(row[0], row[1]) for symbol in trade_symbols: price = row[1][symbol] if np.isnan(price): continue diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]] aim_value = -trade_value*round(diff/0.01,1) now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount']) if aim_value - now_value > 0.5*trade_value: e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) if aim_value - now_value < -0.5*trade_value: e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) stragey_2c = e
(stragey_2c.df['total']/e.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>
手续费和策略参数分析
由于前几个报告用的都是小时线,和实盘参数情况参数很大,现在有了分钟线,就可以看出来一些参数要如何设置,首先先看默认参数的设置:
Trade_value不必说,直接关系到我们的收益和风险,如果Trade_value一直没改过,到目前应该是盈利的。
Alpha由于我们这次有了更高频的数据,显然也要1min更新一次才更加合理,自然要比原来小,具体多少可以通过回测确定。
Adjust_value一直推荐Trade_value的40%以上,原来1hK线设置多少都影响不大,有些人希望调的很低,这样就可以更加紧密的贴近目标持仓,这里将会分析为什么不应该这样做。
首先分析手续费的问题
可以看到在默认费率0.00075的情况下,手续费293,利润为270,比例非常高。我们把手续费设为0,Adjust_value设置为10,看看会怎样。
stragey_2a.account['USDT']
{'fee': 293.85972778530453, 'leverage': 0.45999999999999996, 'margin': 236.23559736312995, 'realised_profit': 281.77464608744435, 'total': 10271.146238, 'unrealised_profit': -10.628408369648495}
Alpha = 0.001 #price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #普通均线 price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA trade_symbols = list(set(symbols)) price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1) e = Exchange(trade_symbols,initial_balance=10000,commission=0,log=False) trade_value = 300 for row in price_usdt.iloc[-7500:].iterrows(): e.Update(row[0], row[1]) for symbol in trade_symbols: price = row[1][symbol] if np.isnan(price): continue diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]] aim_value = -trade_value*round(diff/0.01,1) now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount']) if aim_value - now_value > 10: e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) if aim_value - now_value < 10: e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) stragey_2d = e
(stragey_2d.df['total']/e.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>
结果是一条直线向上,BNB只是带来了一点小小的波折,较低的Adjust_value抓住了每一次波动,没有手续费利润极佳。
如果有手续费,Adjust_value很小会怎样?
Alpha = 0.001 #price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #普通均线 price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA trade_symbols = list(set(symbols)) price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1) e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False) trade_value = 300 for row in price_usdt.iloc[-7500:].iterrows(): e.Update(row[0], row[1]) for symbol in trade_symbols: price = row[1][symbol] if np.isnan(price): continue diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]] aim_value = -trade_value*round(diff/0.01,1) now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount']) if aim_value - now_value > 10: e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) if aim_value - now_value < 10: e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) stragey_2e = e (stragey_2e.df['total']/e.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>
结果也走出了一条直线下跌的曲线,想想很容易理解,在很小的差价范围频繁调整,只会亏掉手续费。
综合来看,手续费水平越低,Adjust_value可以设置的越小,交易越频繁,利润越高。
Alpha设定的问题
既然有了分钟线,基准价格就要一分钟更新一次,这里我们简单回测确定下alpha的大小。目前推荐Alpha设置为0.001。
for Alpha in [0.0001, 0.0003, 0.0006, 0.001, 0.0015, 0.002, 0.004, 0.01, 0.02]: #price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #普通均线 price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA trade_symbols = list(set(symbols)) price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1) e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False) trade_value = 300 for row in price_usdt.iloc[-7500:].iterrows(): e.Update(row[0], row[1]) for symbol in trade_symbols: price = row[1][symbol] if np.isnan(price): continue diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]] aim_value = -trade_value*round(diff/0.01,1) now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount']) if aim_value - now_value > 0.5*trade_value: e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) if aim_value - now_value < -0.5*trade_value: e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) print(Alpha, e.account['USDT']['unrealised_profit']+e.account['USDT']['realised_profit'])
0.0001 -77.80281760941007 0.0003 179.38803796199724 0.0006 218.12579924541367 0.001 271.1462377177959 0.0015 250.0014065973528 0.002 207.38692166891275 0.004 129.08021828803027 0.01 65.12410041648158 0.02 58.62356792410955
最近两月的分钟线回测结果
最后在看看长时间回测的结果。就在刚刚,一波此起彼伏的上涨,今日净值又新低,来给大家增强以下信心吧,由于分钟线的频率更高,将会在小时内开仓平仓,所以收益率会高很多。
还有一点,我们一直是固定的trade_value,这使得后期资金利用率不足,实际上的收益率还可以在增加很多。
在这两个月的回测时间内,我们处于什么位置哪?
<img src=‘https://www.fmz.com/upload/asset/274e19e6ca11dcbc289.jpg'>
Alpha = 0.001 #price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.rolling(20).mean() #普通均线 price_usdt_btc_norm2 = price_usdt_btc/price_usdt_btc.ewm(alpha=Alpha).mean() #这里和策略一致,用了EMA trade_symbols = list(set(symbols)) price_usdt_btc_norm_mean = price_usdt_btc_norm2[trade_symbols].mean(axis=1) e = Exchange(trade_symbols,initial_balance=10000,commission=0.00075,log=False) trade_value = 300 for row in price_usdt.iloc[:].iterrows(): e.Update(row[0], row[1]) for symbol in trade_symbols: price = row[1][symbol] if np.isnan(price): continue diff = price_usdt_btc_norm2.loc[row[0],symbol] - price_usdt_btc_norm_mean[row[0]] aim_value = -trade_value*round(diff/0.01,1) now_value = e.account[symbol]['value']*np.sign(e.account[symbol]['amount']) if aim_value - now_value > 0.5*trade_value: e.Buy(symbol, price, round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) if aim_value - now_value < -0.5*trade_value: e.Sell(symbol, price, -round((aim_value - now_value)/price, 6),round(e.account[symbol]['realised_profit']+e.account[symbol]['unrealised_profit'],2)) stragey_2f = e
(stragey_2f.df['total']/stragey_2e.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>
(stragey_2f.df['leverage']/stragey_2e.initial_balance).plot(figsize=(17,6),grid = True);
<Figure size 1224x432 with 1 Axes>
चुकिटीयह एक बहुत ही अच्छा तरीका है कि हम अपने ग्राहकों के लिए एक अच्छा विकल्प चुन सकते हैं।
excmया फिर यह बहुत जोखिम भरा है, और छोटे बाजार मूल्य वाले सिक्के एक बार में दो या तीन गुना अधिक आसानी से निकलते हैं, और यह स्टील के तारों के माध्यम से है।
झिंगफेंगज़भगवान का शुक्र है
जुन्फेंग91वास्तव में प्रिंटर
sharp3000क्षमता प्लस
वायुसेना कभी गुलाम नहीं होगीक्रूर
घासहां, छोटे मुद्राओं में वृद्धि बहुत विकृत है, और यह रणनीति का मुख्य जोखिम है।