この戦略は,過剰購入および過剰販売の逆転点を決定するためのストキャスト指標と,逆転取引を通じて低価格で購入し高価格で販売することを目的としたトレンド逆転を特定するためのMACD指標を組み合わせます.また,利益を固定し,リスクを効果的に制御するためにトレリングストップを設定します.
ストキャスト指標を使用して,過買いと過売りの条件を特定します.20未満の値は過売りレベルを示し,80を超える値は過買いゾーンを示し,逆転信号を形成します.
MACD ゴールデンクロスでロング,MACD デスクロスでショート.シグナルライン上のMACDクロスが移動平均逆転を示し,トレンド逆転を意味する.
ストカスティック逆転がMACD逆転信号に一致するときにロングまたはショートポジションを取ります.
トレーリングストップ・ロスを実装する.トレンドに入ると,価格が一定の利益パーセントに達すると,トレリングストップが起動する.ストップレベルは上向きの価格チャネルを追跡する.
既存のポジションは,新しい逆転信号が表示されたときに閉鎖され,ストップ・ロスはリセットされます.
複数の指標の確認により信号の精度が向上します
ストカスティックは,過剰購入/過剰販売の領域を効果的に識別します.
MACDは移動平均の逆転を早期に記録する
トレーリングストップは利益にうまく繋がる
十分なバックテストデータと明確な戦略信号
簡単に調整するための最適化可能なパラメータ
複数の指標を最適化する難しさ
逆転信号は誤って判断され 検証が必要です
トレイリングストップをテストし最適化するためにより多くのデータが必要です
ストカスティックとMACDの遅延性
頻繁 な 取引 は 高い 費用 を 引き起こす こと が ある
強力な取引システムを構築するためにより多くの指標を追加します
最適な組み合わせを見つけるために異なるパラメータ期間をテスト
リアルタイムで更新する適応性パラメータを開発
引き上げ停止損失を最大引き上げを制限するように設定する
バランスの違いから誤った信号を避けるためにボリュームを組み込む
取引コストの影響を考慮し,最低利益目標を設定する
この戦略は,有利な逆転取引ポイントを特定するためにストカスタスティックとMACDの強みを組み合わせます. トレーリングストップメカニズムは利益も効果的にロックします. しかし,逆転取引は,より多くの指標からの検証とさらなるパラメータ最適化を必要とする固有のリスクを持ちます. 安定したパラメータと適切な資本管理により,この戦略は非常に効率的な短期取引システムになることができます.
/*backtest start: 2022-09-14 00:00:00 end: 2023-06-24 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 //////////////////////////////////////////////////////////// // @CoinDigger // // Credits for the base strategy go to HPotter // // I've just added a trail stop, basic leverage simulation and stop loss // //////////////////////////////////////////////////////////// // Copyright by HPotter v1.0 28/01/2021 // This is combo strategies for get a cumulative signal. // // First strategy // This System was created from the Book "How I Tripled My Money In The // Futures Market" by Ulf Jensen, Page 183. This is reverse type of strategies. // The strategy buys at market, if close price is higher than the previous close // during 2 days and the meaning of 9-days Stochastic Slow Oscillator is lower than 50. // The strategy sells at market, if close price is lower than the previous close price // during 2 days and the meaning of 9-days Stochastic Fast Oscillator is higher than 50. // // Second strategy // MACD – Moving Average Convergence Divergence. The MACD is calculated // by subtracting a 26-day moving average of a security's price from a // 12-day moving average of its price. The result is an indicator that // oscillates above and below zero. When the MACD is above zero, it means // the 12-day moving average is higher than the 26-day moving average. // This is bullish as it shows that current expectations (i.e., the 12-day // moving average) are more bullish than previous expectations (i.e., the // 26-day average). This implies a bullish, or upward, shift in the supply/demand // lines. When the MACD falls below zero, it means that the 12-day moving average // is less than the 26-day moving average, implying a bearish shift in the // supply/demand lines. // A 9-day moving average of the MACD (not of the security's price) is usually // plotted on top of the MACD indicator. This line is referred to as the "signal" // line. The signal line anticipates the convergence of the two moving averages // (i.e., the movement of the MACD toward the zero line). // Let's consider the rational behind this technique. The MACD is the difference // between two moving averages of price. When the shorter-term moving average rises // above the longer-term moving average (i.e., the MACD rises above zero), it means // that investor expectations are becoming more bullish (i.e., there has been an // upward shift in the supply/demand lines). By plotting a 9-day moving average of // the MACD, we can see the changing of expectations (i.e., the shifting of the // supply/demand lines) as they occur. // // WARNING: // - For purpose educate only // - This script to change bars colors. //////////////////////////////////////////////////////////// Reversal123(Length, KSmoothing, DLength, Level) => vFast = sma(stoch(close, high, low, Length), KSmoothing) vSlow = sma(vFast, DLength) pos = 0.0 pos := iff(close[2] < close[1] and close > close[1] and vFast < vSlow and vFast > Level, 1, iff(close[2] > close[1] and close < close[1] and vFast > vSlow and vFast < Level, -1, nz(pos[1], 0))) pos MACD(fastLength,slowLength,signalLength) => pos = 0.0 fastMA = ema(close, fastLength) slowMA = ema(close, slowLength) macd = fastMA - slowMA signal = sma(macd, signalLength) pos:= iff(signal < macd , 1, iff(signal > macd, -1, nz(pos[1], 0))) pos strategy(title="Combo Backtest 123 Reversal & MACD Crossover with Trail and Stop", shorttitle="ComboReversal123MACDWithStop", overlay = false, precision=8,default_qty_type=strategy.percent_of_equity, default_qty_value=100, initial_capital=100, currency="USD", commission_type=strategy.commission.percent, commission_value=0.075) leverage=input(2,"leverage",step=1) percentOfEquity=input(100,"percentOfEquity",step=1) sl_trigger = input(10, title='Stop Trail Trigger %', type=input.float)/100 sl_trail = input(5, title='Stop Trail %', type=input.float)/100 sl_inp = input(10, title='Stop Loss %', type=input.float)/100 Length = input(100, minval=1) KSmoothing = input(1, minval=1) DLength = input(2, minval=1) Level = input(1, minval=1) //------------------------- fastLength = input(10, minval=1) slowLength = input(19,minval=1) signalLength=input(24,minval=1) xSeria = input(title="Source", type=input.source, defval=close) reverse = input(false, title="Trade reverse") //////////////////////////////////////////////////////////////////////////////// // BACKTESTING RANGE // From Date Inputs fromDay = input(defval = 1, title = "From Day", minval = 1, maxval = 31) fromMonth = input(defval = 1, title = "From Month", minval = 1, maxval = 12) fromYear = input(defval = 2015, title = "From Year", minval = 1970) // To Date Inputs toDay = input(defval = 1, title = "To Day", minval = 1, maxval = 31) toMonth = input(defval = 1, title = "To Month", minval = 1, maxval = 12) toYear = input(defval = 2999, title = "To Year", minval = 1970) // Calculate start/end date and time condition startDate = timestamp(fromYear, fromMonth, fromDay, 00, 00) finishDate = timestamp(toYear, toMonth, toDay, 00, 00) time_cond = time >= startDate and time <= finishDate //////////////////////////////////////////////////////////////////////////////// ////////////////////// STOP LOSS CALCULATIONS ////////////////////////////// /////////////////////////////////////////////////// cond() => barssince(strategy.position_size[1] == 0 and (strategy.position_size > 0 or strategy.position_size < 0)) > 0 lastStopLong = 0.0 lastStopLong := lastStopLong[1] != strategy.position_avg_price - (strategy.position_avg_price * (sl_inp)) and lastStopLong[1] != 0.0 ? lastStopLong[1] : strategy.position_size > 0 ? (cond() and close > strategy.position_avg_price + (strategy.position_avg_price * (sl_trigger)) ? strategy.position_avg_price + (strategy.position_avg_price * (sl_trail)) : strategy.position_avg_price - (strategy.position_avg_price * (sl_inp))) : 0 lastStopShort = 0.0 lastStopShort := lastStopShort[1] != strategy.position_avg_price + (strategy.position_avg_price * (sl_inp)) and lastStopShort[1] != 9999999999.0 ? lastStopShort[1] : strategy.position_size < 0 ? (cond() and close < strategy.position_avg_price - (strategy.position_avg_price * (sl_trigger)) ? strategy.position_avg_price - (strategy.position_avg_price * (sl_trail)) : strategy.position_avg_price + (strategy.position_avg_price * (sl_inp))) : 9999999999.0 longStopPrice = 0.0 longStopPrice2 = 0.0 longStopPrice3 = 0.0 shortStopPrice = 0.0 longStopPrice := if strategy.position_size > 0 originalStop = strategy.position_avg_price - (strategy.position_avg_price * (sl_inp)) trigger = strategy.position_avg_price + (strategy.position_avg_price * (sl_trigger)) trail = strategy.position_avg_price + (strategy.position_avg_price * (sl_trail)) stopValue = high > trigger ? trail : 0 max(stopValue, originalStop, longStopPrice[1]) else 0 longStopPrice2 := if strategy.position_size > 0 originalStop = strategy.position_avg_price - (strategy.position_avg_price * (sl_inp)) trigger = strategy.position_avg_price + (strategy.position_avg_price * (sl_trigger*2)) trail = strategy.position_avg_price + (strategy.position_avg_price * (sl_trail*2)) stopValue = high > trigger ? trail : 0 max(stopValue, originalStop, longStopPrice2[1]) else 0 longStopPrice3 := if strategy.position_size > 0 originalStop = strategy.position_avg_price - (strategy.position_avg_price * (sl_inp)) trigger = strategy.position_avg_price + (strategy.position_avg_price * (sl_trigger*4)) trail = strategy.position_avg_price + (strategy.position_avg_price * (sl_trail*3)) stopValue = high > trigger ? trail : 0 max(stopValue, originalStop, longStopPrice3[1]) else 0 shortStopPrice := if strategy.position_size < 0 originalStop = strategy.position_avg_price + (strategy.position_avg_price * (sl_inp)) trigger = strategy.position_avg_price - (strategy.position_avg_price * (sl_trigger)) trail = strategy.position_avg_price - (strategy.position_avg_price * (sl_trail)) stopValue = low < trigger ? trail : 999999 min(stopValue, originalStop, shortStopPrice[1]) else 999999 /////////////////////////////////////////////////// /////////////////////////////////////////////////// posReversal123 = Reversal123(Length, KSmoothing, DLength, Level) posMACD = MACD(fastLength,slowLength, signalLength) pos = iff(posReversal123 == 1 and posMACD == 1 , 1, iff(posReversal123 == -1 and posMACD == -1, -1, 0)) possig = pos quantity = max(0.000001,min(((strategy.equity*(percentOfEquity/100))*leverage/open),100000000)) if (possig == 1 and time_cond) strategy.entry("Long", strategy.long, qty=quantity) if (possig == -1 and time_cond) strategy.entry("Short", strategy.short, qty=quantity) if (strategy.position_size > 0 and possig == -1 and time_cond) strategy.close_all() if (strategy.position_size < 0 and possig == 1 and time_cond) strategy.close_all() if ((strategy.position_size < 0 or strategy.position_size > 0) and possig == 0) strategy.close_all() //EXIT TRADE @ TSL if strategy.position_size > 0 strategy.exit(id="Long", stop=longStopPrice) if strategy.position_size < 0 strategy.exit(id="Short", stop=shortStopPrice)