이것은 단지 대략적인 모형일 뿐이며, 모든 사람들에게 손실의 규모에 대한 구체적인 개념을 줄 수 있습니다. 정책에는 요금 업그레이드 버전이 있으며 많은 개선 사항이 있습니다.
币安做空超涨做多超跌策略的风险估计
先看原始报告:https://www.fmz.com/digest-topic/5294 , 改进报告:https://www.fmz.com/digest-topic/5364
策略公开了4天,前期表现实在太好,收益很高,极少回撤,以至于很多人上了很高的杠杆,去搏每天10%的收益。但如同开始的报告所说,没有完美的策略,空超涨做多超跌是利用了山寨币同涨同跌的特性,如果有币种走出独特的趋势,会积累很多仓位,虽然改进版加上了移动平均来追踪从初始价格,但风险依然存在,本报告主要量化具体的风险,以及为什么参数推荐trade_value要占总资金的3%。
为了代码突出,把这部分提前了,大家先运行后面的代码(从导入库开始)。
为了模拟我们假设了20个币种,但只用添加BTC和ETH,用BTC代表价格不变的19个币,ETH表示出现独立行情的币种。由于只是模拟,这里就不用移动平均来追踪初始价格了,假设价格是很快的速度上涨来的。
首先模拟一下单个币价不断上涨的情况,stop_loss表示止损偏离,这里仅仅模拟,实际情况会有间歇性的回调,不会如此差。
假设这个币没有任何回调,但止损偏离为0.41时,此时ETH上涨了44%,最终亏损了7倍的交易额,即trade_value*7。如果trade_value设置为总资金的3%,那么亏损=总资金*0.03*7。最大回撤约为0.03*7=21%。
可以根据下面的结果估算自己的风险承受能力。
btc_price = [1]*500 #比特币价格,一直不变 eth_price = [i/100. for i in range(100,500)] #以太坊,一个周期上涨1% for stop_loss in [i/1000. for i in range(10,1500,50)]: e = Exchange(['BTC','ETH'],initial_balance=10000,commission=0.0005,log=False) trade_value = 300 # 交易额为300 for i in range(200): index = (btc_price[i]*19+eth_price[i])/20. #指数 e.Update(i,{'BTC':btc_price[i], 'ETH':eth_price[i]}) diff_btc = btc_price[i] - index #偏差 diff_eth = eth_price[i] - index btc_value = e.account['BTC']['value']*np.sign(e.account['BTC']['amount']) eth_value = e.account['ETH']['value']*np.sign(e.account['ETH']['amount']) aim_btc_value = -trade_value*round(diff_btc/0.01,1)*19 #这里BTC代替的是19个币种 aim_eth_value = -trade_value*round(diff_eth/0.01,1) if aim_btc_value - btc_value > 20: e.Buy('BTC',btc_price[i],(aim_btc_value - btc_value)/btc_price[i]) if aim_eth_value - eth_value < -20 and diff_eth < stop_loss: e.Sell('ETH',eth_price[i], (eth_value-aim_eth_value)/eth_price[i],diff_eth) if diff_eth > stop_loss and eth_value < 0: #止损 stop_price = eth_price[i] e.Buy('ETH',eth_price[i], (-eth_value)/eth_price[i],diff_eth) print('币价:',stop_price,' 止损偏离:', stop_loss,'最终余额:',e.df['total'].iloc[-1], ' 亏损交易额倍数:',round((e.initial_balance-e.df['total'].iloc[-1])/300,1))
币价: 1.02 止损偏离: 0.01 最终余额: 9968.840396 亏损交易额倍数: 0.1 币价: 1.07 止损偏离: 0.06 最终余额: 9912.862738 亏损交易额倍数: 0.3 币价: 1.12 止损偏离: 0.11 最终余额: 9793.616067 亏损交易额倍数: 0.7 币价: 1.17 止损偏离: 0.16 最终余额: 9617.477263 亏损交易额倍数: 1.3 币价: 1.23 止损偏离: 0.21 最终余额: 9337.527299 亏损交易额倍数: 2.2 币价: 1.28 止损偏离: 0.26 最终余额: 9051.5166 亏损交易额倍数: 3.2 币价: 1.33 止损偏离: 0.31 最终余额: 8721.285267 亏损交易额倍数: 4.3 币价: 1.38 止损偏离: 0.36 最终余额: 8350.582251 亏损交易额倍数: 5.5 币价: 1.44 止损偏离: 0.41 最终余额: 7856.720861 亏损交易额倍数: 7.1 币价: 1.49 止损偏离: 0.46 最终余额: 7406.412066 亏损交易额倍数: 8.6 币价: 1.54 止损偏离: 0.51 最终余额: 6923.898356 亏损交易额倍数: 10.3 币价: 1.59 止损偏离: 0.56 最终余额: 6411.276143 亏损交易额倍数: 12.0 币价: 1.65 止损偏离: 0.61 最终余额: 5758.736222 亏损交易额倍数: 14.1 币价: 1.7 止损偏离: 0.66 最终余额: 5186.230956 亏损交易额倍数: 16.0 币价: 1.75 止损偏离: 0.71 最终余额: 4588.802975 亏损交易额倍数: 18.0 币价: 1.81 止损偏离: 0.76 最终余额: 3841.792751 亏损交易额倍数: 20.5 币价: 1.86 止损偏离: 0.81 最终余额: 3193.215479 亏损交易额倍数: 22.7 币价: 1.91 止损偏离: 0.86 最终余额: 2525.155765 亏损交易额倍数: 24.9 币价: 1.96 止损偏离: 0.91 最终余额: 1837.699982 亏损交易额倍数: 27.2 币价: 2.02 止损偏离: 0.96 最终余额: 988.009942 亏损交易额倍数: 30.0 币价: 2.07 止损偏离: 1.01 最终余额: 260.639618 亏损交易额倍数: 32.5 币价: 2.12 止损偏离: 1.06 最终余额: -483.509646 亏损交易额倍数: 34.9 币价: 2.17 止损偏离: 1.11 最终余额: -1243.486107 亏损交易额倍数: 37.5 币价: 2.24 止损偏离: 1.16 最终余额: -2175.438384 亏损交易额倍数: 40.6 币价: 2.28 止损偏离: 1.21 最终余额: -2968.19255 亏损交易额倍数: 43.2 币价: 2.33 止损偏离: 1.26 最终余额: -3774.613275 亏损交易额倍数: 45.9 币价: 2.38 止损偏离: 1.31 最终余额: -4594.305499 亏损交易额倍数: 48.6 币价: 2.44 止损偏离: 1.36 最终余额: -5594.651063 亏损交易额倍数: 52.0 币价: 2.49 止损偏离: 1.41 最终余额: -6441.474964 亏损交易额倍数: 54.8 币价: 2.54 止损偏离: 1.46 最终余额: -7299.652662 亏损交易额倍数: 57.7
在模拟一下不断下跌的情况,下跌伴随这合约价值的减小,因此风险比上涨更高,随着价格下跌,亏损上升的速度加速。止损偏离值为-0.31时,此时币价下跌33%,亏损了6.5个交易额,如果交易额trade_value设置为总资金的3%,最大回撤约为0.03*6.5=19.5%。
btc_price = [1]*500 #比特币价格,一直不变 eth_price = [2-i/100. for i in range(100,200)] #以太坊 for stop_loss in [-i/1000. for i in range(10,1000,50)]: e = Exchange(['BTC','ETH'],initial_balance=10000,commission=0.0005,log=False) trade_value = 300 # 交易额为300 for i in range(100): index = (btc_price[i]*19+eth_price[i])/20. #指数 e.Update(i,{'BTC':btc_price[i], 'ETH':eth_price[i]}) diff_btc = btc_price[i] - index #偏差 diff_eth = eth_price[i] - index btc_value = e.account['BTC']['value']*np.sign(e.account['BTC']['amount']) eth_value = e.account['ETH']['value']*np.sign(e.account['ETH']['amount']) aim_btc_value = -trade_value*round(diff_btc/0.01,1)*19 #这里BTC代替的是19个币种 aim_eth_value = -trade_value*round(diff_eth/0.01,1) if aim_btc_value - btc_value < -20: e.Sell('BTC',btc_price[i],-(aim_btc_value - btc_value)/btc_price[i]) if aim_eth_value - eth_value > 20 and diff_eth > stop_loss: e.Buy('ETH',eth_price[i], -(eth_value-aim_eth_value)/eth_price[i],diff_eth) if diff_eth < stop_loss and eth_value > 0: e.Sell('ETH',eth_price[i], (eth_value)/eth_price[i],diff_eth) stop_price = eth_price[i] print('币价:',round(stop_price,2),' 止损偏离:', stop_loss,'最终余额:',e.df['total'].iloc[-1], ' 亏损交易额倍数:',round((e.initial_balance-e.df['total'].iloc[-1])/300,1))
币价: 0.98 止损偏离: -0.01 最终余额: 9983.039091 亏损交易额倍数: 0.1 币价: 0.93 止损偏离: -0.06 最终余额: 9922.200148 亏损交易额倍数: 0.3 币价: 0.88 止损偏离: -0.11 最终余额: 9778.899361 亏损交易额倍数: 0.7 币价: 0.83 止损偏离: -0.16 最终余额: 9545.316075 亏损交易额倍数: 1.5 币价: 0.77 止损偏离: -0.21 最终余额: 9128.800213 亏损交易额倍数: 2.9 币价: 0.72 止损偏离: -0.26 最终余额: 8651.260863 亏损交易额倍数: 4.5 币价: 0.67 止损偏离: -0.31 最终余额: 8037.598952 亏损交易额倍数: 6.5 币价: 0.62 止损偏离: -0.36 最终余额: 7267.230651 亏损交易额倍数: 9.1 币价: 0.56 止损偏离: -0.41 最终余额: 6099.457595 亏损交易额倍数: 13.0 币价: 0.51 止损偏离: -0.46 最终余额: 4881.767442 亏损交易额倍数: 17.1 币价: 0.46 止损偏离: -0.51 最终余额: 3394.414792 亏损交易额倍数: 22.0 币价: 0.41 止损偏离: -0.56 最终余额: 1575.135344 亏损交易额倍数: 28.1 币价: 0.35 止损偏离: -0.61 最终余额: -1168.50508 亏损交易额倍数: 37.2 币价: 0.29 止损偏离: -0.66 最终余额: -4071.007983 亏损交易额倍数: 46.9 币价: 0.25 止损偏离: -0.71 最终余额: -7750.361195 亏损交易额倍数: 59.2 币价: 0.19 止损偏离: -0.76 最终余额: -13618.366286 亏损交易额倍数: 78.7 币价: 0.14 止损偏离: -0.81 最终余额: -20711.473968 亏损交易额倍数: 102.4 币价: 0.09 止损偏离: -0.86 最终余额: -31335.965608 亏损交易额倍数: 137.8 币价: 0.04 止损偏离: -0.91 最终余额: -51163.223715 亏损交易额倍数: 203.9 币价: 0.04 止损偏离: -0.96 最终余额: -81178.565715 亏损交易额倍数: 303.9
# 需要导入的库 import pandas as pd import requests import matplotlib.pyplot as plt import seaborn as sns import numpy as np %matplotlib inline
price_usdt = pd.read_csv('https://www.fmz.com/upload/asset/20227de6c1d10cb9dd1.csv ', index_col = 0) price_usdt.index = pd.to_datetime(price_usdt.index) price_usdt_norm = price_usdt/price_usdt.fillna(method='bfill').iloc[0,] price_usdt_btc = price_usdt.divide(price_usdt['BTC'],axis=0) price_usdt_btc_norm = price_usdt_btc/price_usdt_btc.fillna(method='bfill').iloc[0,]
class Exchange: def __init__(self, trade_symbols, leverage=20, commission=0.00005, initial_balance=10000, log=False): self.initial_balance = initial_balance #初始的资产 self.commission = commission self.leverage = leverage self.trade_symbols = trade_symbols self.date = '' self.log = log self.df = pd.DataFrame(columns=['margin','total','leverage','realised_profit','unrealised_profit']) self.account = {'USDT':{'realised_profit':0, 'margin':0, 'unrealised_profit':0, 'total':initial_balance, 'leverage':0, 'fee':0}} for symbol in trade_symbols: self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0, 'margin':0, 'unrealised_profit':0,'fee':0} def Trade(self, symbol, direction, price, amount, msg=''): if self.date and self.log: print('%-20s%-5s%-5s%-10.8s%-8.6s %s'%(str(self.date), symbol, 'buy' if direction == 1 else 'sell', price, amount, msg)) cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount) open_amount = amount - cover_amount self.account['USDT']['realised_profit'] -= price*amount*self.commission #扣除手续费 self.account['USDT']['fee'] += price*amount*self.commission self.account[symbol]['fee'] += price*amount*self.commission if cover_amount > 0: #先平仓 self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount #利润 self.account['USDT']['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage #释放保证金 self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount self.account[symbol]['amount'] -= -direction*cover_amount self.account[symbol]['margin'] -= cover_amount*self.account[symbol]['hold_price']/self.leverage self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price'] if open_amount > 0: total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount total_amount = direction*self.account[symbol]['amount']+open_amount self.account['USDT']['margin'] += open_amount*price/self.leverage self.account[symbol]['hold_price'] = total_cost/total_amount self.account[symbol]['amount'] += direction*open_amount self.account[symbol]['margin'] += open_amount*price/self.leverage self.account[symbol]['unrealised_profit'] = (price - self.account[symbol]['hold_price'])*self.account[symbol]['amount'] self.account[symbol]['price'] = price self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*price return True def Buy(self, symbol, price, amount, msg=''): self.Trade(symbol, 1, price, amount, msg) def Sell(self, symbol, price, amount, msg=''): self.Trade(symbol, -1, price, amount, msg) def Update(self, date, close_price): #对资产进行更新 self.date = date self.close = close_price self.account['USDT']['unrealised_profit'] = 0 for symbol in self.trade_symbols: if np.isnan(close_price[symbol]): continue self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount'] self.account[symbol]['price'] = close_price[symbol] self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol] self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit'] self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6) self.account['USDT']['leverage'] = round(self.account['USDT']['margin']/self.account['USDT']['total'],4)*self.leverage self.df.loc[self.date] = [self.account['USDT']['margin'],self.account['USDT']['total'],self.account['USDT']['leverage'],self.account['USDT']['realised_profit'],self.account['USDT']['unrealised_profit']]
초목/upload/asset/295a58e8490ca09dee6.csv /upload/asset/20fd9fc1b5f15ee472c.csv /upload/asset/17d46d81df76072032d.csv
초목/upload/asset/183692a269093e37f10.csv /upload/asset/18a0645bb73bf4c087a.csv /upload/asset/1e9c37f0ccc1385d81c.csv
sharp3000이 숫자의 분석은,
초목시장에 영향을 미칠 수 있는 수천 명의 인재가 있습니다.
초목공개적으로 모든 사람들을 둘러보도록 합니다.