Sumber dimuat naik... memuat...

Strategi keseimbangan kekal yang sesuai untuk pasaran bear bottoming

Penulis:FMZ~Lydia, Dicipta: 2022-08-16 09:22:14, Dikemas kini: 2023-09-19 21:42:12

img

Pada masa lalu, FMZ secara rasmi mengeluarkan strategi grid kekal, yang popular di kalangan pengguna, dan penonton yang berdagang TRX dalam bot sebenar telah memperoleh banyak keuntungan pada tahun lalu dengan risiko yang boleh dikawal.

  1. Adalah perlu untuk menetapkan parameter seperti harga awal, jarak grid, nilai grid, mod panjang-pendek, dll. Tetapan rumit dan mempunyai kesan yang besar terhadap keuntungan, menjadikannya sukar untuk pemula untuk menetapkan.
  2. Strategi grid kekal mempunyai risiko penjualan pendek yang tinggi, manakala risiko penjualan panjang agak rendah. Walaupun nilai grid ditetapkan pada nilai yang kecil, ia tidak akan mempunyai kesan yang besar pada harga penjualan pendek.
  3. Grid kontrak kekal boleh memilih untuk hanya pergi lama untuk mengelakkan risiko pendek, ia kelihatan baik setakat ini.

Saya menulis artikel mengenai prinsip strategi keseimbangan dan perbandingan dengan strategi grid sebelum ini, dan anda masih boleh merujuknya sekarang:https://www.fmz.com/digest-topic/9294. Strategi baki sentiasa memegang kedudukan dengan nisbah nilai tetap atau nilai, menjual beberapa apabila ia meningkat, dan membeli apabila ia jatuh. Ia boleh dijalankan dengan tetapan mudah. Walaupun harga mata wang meningkat banyak, tidak ada risiko untuk pergi pendek. Masalah dengan strategi baki spot adalah bahawa penggunaan modal adalah rendah, dan tidak ada cara yang mudah untuk meningkatkan leverage. Dan kontrak kekal boleh menyelesaikan masalah ini. Jika jumlah modal adalah 1000, 2000 boleh dipegang tetap, yang melebihi modal asal dan meningkatkan penggunaan modal. Parameter lain adalah nisbah penyesuaian, yang mengawal berapa banyak untuk menghisap atau membuang kedudukan. Jika ditetapkan kepada 0.01, ini bermakna kedudukan dibuang sekali untuk peningkatan 1% dan ditingkatkan sekali untuk penurunan 1%.

Untuk pemula, strategi baki sangat disyorkan. Operasi adalah mudah, hanya menetapkan parameter nisbah pegangan atau nilai kedudukan, dan anda boleh menjalankannya tanpa berfikir tanpa bimbang tentang kenaikan harga yang berterusan. Mereka yang mempunyai pengalaman tertentu boleh memilih strategi grid, dan memutuskan had atas dan bawah turun naik dan dana setiap grid, untuk meningkatkan penggunaan dana dan mendapatkan keuntungan maksimum.

Untuk memudahkan pengujian balik lebih banyak pasangan dagangan, dokumen ini akan menunjukkan proses pengujian balik yang lengkap, dan pengguna boleh menyesuaikan parameter dan pasangan dagangan yang berbeza untuk perbandingan. (Versi adalah Python3, dan ejen diperlukan untuk memuat turun sebut harga. Pengguna boleh memuat turun Anancoda3 sendiri atau menjalankannya melalui Googles colab)

import requests
from datetime import date,datetime
import time
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import requests, zipfile, io
%matplotlib inline
## Current trading pairs
Info = requests.get('https://fapi.binance.com/fapi/v1/exchangeInfo')
symbols = [s['symbol'] for s in Info.json()['symbols']]
symbols = list(set(filter(lambda x: x[-4:] == 'USDT', [s.split('_')[0] for s in symbols]))-
                 set(['1000SHIBUSDT','1000XECUSDT','BTCDOMUSDT','DEFIUSDT','BTCSTUSDT'])) + ['SHIBUSDT','XECUSDT']
print(symbols)
['FLMUSDT', 'ICPUSDT', 'CHZUSDT', 'APEUSDT', 'DARUSDT', 'TLMUSDT', 'ETHUSDT', 'STMXUSDT', 'ENJUSDT', 'LINKUSDT', 'OGNUSDT', 'RSRUSDT', 'QTUMUSDT', 'UNIUSDT', 'BNBUSDT', 'XLMUSDT', 'ATOMUSDT', 'LPTUSDT', 'UNFIUSDT', 'DASHUSDT', 'BTCUSDT', 'NEOUSDT', 'AAVEUSDT', 'DUSKUSDT', 'XRPUSDT', 'IOTXUSDT', 'CVCUSDT', 'SANDUSDT', 'XTZUSDT', 'IOTAUSDT', 'BELUSDT', 'MANAUSDT', 'IOSTUSDT', 'IMXUSDT', 'THETAUSDT', 'SCUSDT', 'DOGEUSDT', 'CELOUSDT', 'BNXUSDT', 'SNXUSDT', 'ZRXUSDT', 'HBARUSDT', 'DOTUSDT', 'ANKRUSDT', 'CELRUSDT', 'BAKEUSDT', 'GALUSDT', 'ICXUSDT', 'LRCUSDT', 'AVAXUSDT', 'C98USDT', 'MTLUSDT', 'FTTUSDT', 'MASKUSDT', 'RLCUSDT', 'MATICUSDT', 'COMPUSDT', 'BLZUSDT', 'CRVUSDT', 'ZECUSDT', 'RUNEUSDT', 'LITUSDT', 'ONEUSDT', 'ADAUSDT', 'NKNUSDT', 'LTCUSDT', 'ATAUSDT', 'GALAUSDT', 'BALUSDT', 'ROSEUSDT', 'EOSUSDT', 'YFIUSDT', 'SKLUSDT', 'BANDUSDT', 'ALGOUSDT', 'NEARUSDT', 'AXSUSDT', 'KSMUSDT', 'AUDIOUSDT', 'SRMUSDT', 'HNTUSDT', 'MKRUSDT', 'KLAYUSDT', 'FLOWUSDT', 'STORJUSDT', 'BCHUSDT', 'DYDXUSDT', 'ARUSDT', 'GMTUSDT', 'CHRUSDT', 'API3USDT', 'VETUSDT', 'KAVAUSDT', 'WAVESUSDT', 'EGLDUSDT', 'SFPUSDT', 'RENUSDT', 'SUSHIUSDT', 'SOLUSDT', 'RVNUSDT', 'ONTUSDT', 'BTSUSDT', 'ZILUSDT', 'GTCUSDT', 'ZENUSDT', 'ALICEUSDT', 'ETCUSDT', 'TRXUSDT', 'TOMOUSDT', 'FILUSDT', 'ARPAUSDT', 'CTKUSDT', 'BATUSDT', 'SXPUSDT', '1INCHUSDT', 'HOTUSDT', 'WOOUSDT', 'LINAUSDT', 'REEFUSDT', 'GRTUSDT', 'RAYUSDT', 'COTIUSDT', 'XMRUSDT', 'PEOPLEUSDT', 'OCEANUSDT', 'JASMYUSDT', 'TRBUSDT', 'ANTUSDT', 'XEMUSDT', 'DGBUSDT', 'ENSUSDT', 'OMGUSDT', 'ALPHAUSDT', 'FTMUSDT', 'DENTUSDT', 'KNCUSDT', 'CTSIUSDT', 'SHIBUSDT', 'XECUSDT']
#Get the function of the K-line of any period
def GetKlines(symbol='BTCUSDT',start='2020-8-10',end='2021-8-10',period='1h',base='fapi',v = 'v1'):
    Klines = []
    start_time = int(time.mktime(datetime.strptime(start, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000
    end_time =  min(int(time.mktime(datetime.strptime(end, "%Y-%m-%d").timetuple()))*1000 + 8*60*60*1000,time.time()*1000)
    intervel_map = {'m':60*1000,'h':60*60*1000,'d':24*60*60*1000}
    while start_time < end_time:
        mid_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
        url = 'https://'+base+'.binance.com/'+base+'/'+v+'/klines?symbol=%s&interval=%s&startTime=%s&endTime=%s&limit=1000'%(symbol,period,start_time,mid_time)
        #print(url)
        res = requests.get(url)
        res_list = res.json()
        if type(res_list) == list and len(res_list) > 0:
            start_time = res_list[-1][0]+int(period[:-1])*intervel_map[period[-1]]
            Klines += res_list
        if type(res_list) == list and len(res_list) == 0:
            start_time = start_time+1000*int(period[:-1])*intervel_map[period[-1]]
        if mid_time >= end_time:
            break

    df = pd.DataFrame(Klines,columns=['time','open','high','low','close','amount','end_time','volume','count','buy_amount','buy_volume','null']).astype('float')
    df.index = pd.to_datetime(df.time,unit='ms')
    return df

Dengan memuat turun harga penutupan semua pasangan dagangan dari tahun 2021 hingga sekarang, kita dapat melihat perubahan dalam indeks pasaran keseluruhan: 2021 hingga 2022 tidak diragukan lagi merupakan pasaran lembu, dan indeks sekali naik 14 kali. Boleh dikatakan bahawa emas ada di mana-mana, dan banyak mata wang telah meningkat ratusan kali. Walau bagaimanapun, pada tahun 2022, pasaran beruang yang telah berlangsung selama setengah tahun telah bermula, dengan indeks merosot 80%, dan berpuluh-puluh mata wang telah menarik diri lebih dari 90%. Indeks kini berada di sekitar 3, yang masih merupakan kenaikan 200% berbanding awal tahun 2021, dan ia harus menjadi paras terendah pada masa ini, memandangkan perkembangan pasaran.

Mata wang yang harga tertinggi telah meningkat lebih daripada 10 kali sejak awal tahun:

MKRUSDT: 10.294, CRVUSDT: 10.513, STORJUSDT: 10.674, SKLUSDT: 11.009, CVCUSDT: 11.026, SRMUSDT: 11.031, QTUMUSDT: 12.066, ALPUSDT: 12.103, ZENUSDT: 12.631, VETUSDT: 13.296, ROSEUSDT: 13.429, FTTUSDT: 13.705, IOSTT: 13.786, TICOUSDT: 13.958, NEARUSDT: 14.855, HUDBARUSDT: 14.855, HOCHOBARUSDT: 15.311, 312, 37.41, 37.41, 37.41, 37.41, 37.41, 37.91, 37.9, 38.9, 38.9, 38.9, 3

Mata wang dengan pengeluaran semasa lebih daripada 80% dari titik tertinggi:

ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK: ATAK

#Download closing prices for all trading pairs
start_date = '2021-1-1'
end_date = '2022-05-30'
period = '1d'
df_all = pd.DataFrame(index=pd.date_range(start=start_date, end=end_date, freq=period),columns=symbols)
for i in range(len(symbols)):
    #print(symbols[i])
    symbol = symbols[i]
    df_s = GetKlines(symbol=symbol,start=start_date,end=end_date,period=period,base='api',v='v3')
    df_all[symbol] = df_s[~df_s.index.duplicated(keep='first')].close
#Index changes
df_norm = df_all/df_all.fillna(method='bfill').iloc[0] #Normalization
df_norm.mean(axis=1).plot(figsize=(15,6),grid=True);

png

#The highest increase over the beginning of the year
max_up = df_all.max()/df_all.fillna(method='bfill').iloc[0]
print(max_up.map(lambda x:round(x,3)).sort_values().to_dict())
{'JASMYUSDT': 1.0, 'ICPUSDT': 1.0, 'LINAUSDT': 1.0, 'WOOUSDT': 1.0, 'GALUSDT': 1.0, 'PEOPLEUSDT': 1.0, 'XECUSDT': 1.026, 'ENSUSDT': 1.032, 'TLMUSDT': 1.039, 'IMXUSDT': 1.099, 'FLOWUSDT': 1.155, 'ATAUSDT': 1.216, 'DARUSDT': 1.261, 'ALICEUSDT': 1.312, 'BNXUSDT': 1.522, 'API3USDT': 1.732, 'GTCUSDT': 1.833, 'KLAYUSDT': 1.891, 'BAKEUSDT': 1.892, 'DYDXUSDT': 2.062, 'SHIBUSDT': 2.281, 'BTCUSDT': 2.302, 'MASKUSDT': 2.396, 'SFPUSDT': 2.74, 'LPTUSDT': 2.75, 'APEUSDT': 2.783, 'ARUSDT': 2.928, 'CELOUSDT': 2.951, 'ZILUSDT': 2.999, 'LTCUSDT': 3.072, 'SNXUSDT': 3.266, 'XEMUSDT': 3.555, 'XMRUSDT': 3.564, 'YFIUSDT': 3.794, 'BANDUSDT': 3.812, 'RAYUSDT': 3.924, 'REEFUSDT': 4.184, 'ANTUSDT': 4.205, 'XTZUSDT': 4.339, 'CTKUSDT': 4.352, 'LITUSDT': 4.38, 'RSRUSDT': 4.407, 'LINKUSDT': 4.412, 'BCHUSDT': 4.527, 'DASHUSDT': 5.037, 'BALUSDT': 5.172, 'OCEANUSDT': 5.277, 'EOSUSDT': 5.503, 'RENUSDT': 5.538, 'XLMUSDT': 5.563, 'TOMOUSDT': 5.567, 'ZECUSDT': 5.654, 'COMPUSDT': 5.87, 'DGBUSDT': 5.948, 'ALGOUSDT': 5.981, 'ONTUSDT': 5.997, 'BELUSDT': 6.101, 'TRXUSDT': 6.116, 'ZRXUSDT': 6.135, 'GRTUSDT': 6.45, '1INCHUSDT': 6.479, 'DOTUSDT': 6.502, 'ETHUSDT': 6.596, 'KAVAUSDT': 6.687, 'ICXUSDT': 6.74, 'SUSHIUSDT': 6.848, 'AAVEUSDT': 6.931, 'BTSUSDT': 6.961, 'KNCUSDT': 6.966, 'C98USDT': 7.091, 'THETAUSDT': 7.222, 'ATOMUSDT': 7.553, 'OMGUSDT': 7.556, 'SXPUSDT': 7.681, 'UNFIUSDT': 7.696, 'XRPUSDT': 7.726, 'TRBUSDT': 8.241, 'BLZUSDT': 8.434, 'NEOUSDT': 8.491, 'FLMUSDT': 8.506, 'KSMUSDT': 8.571, 'FILUSDT': 8.591, 'IOTAUSDT': 8.616, 'BATUSDT': 8.647, 'ARPAUSDT': 9.055, 'UNIUSDT': 9.104, 'WAVESUSDT': 9.106, 'MKRUSDT': 10.294, 'CRVUSDT': 10.513, 'STORJUSDT': 10.674, 'SKLUSDT': 11.009, 'CVCUSDT': 11.026, 'SRMUSDT': 11.031, 'QTUMUSDT': 12.066, 'ALPHAUSDT': 12.103, 'ZENUSDT': 12.631, 'VETUSDT': 13.296, 'ROSEUSDT': 13.429, 'FTTUSDT': 13.705, 'IOSTUSDT': 13.786, 'COTIUSDT': 13.958, 'NEARUSDT': 14.855, 'HBARUSDT': 15.312, 'RLCUSDT': 15.432, 'SCUSDT': 15.6, 'GALAUSDT': 15.722, 'RUNEUSDT': 15.795, 'ADAUSDT': 16.94, 'MTLUSDT': 17.18, 'BNBUSDT': 17.899, 'RVNUSDT': 18.169, 'EGLDUSDT': 18.879, 'LRCUSDT': 19.499, 'ANKRUSDT': 21.398, 'ETCUSDT': 23.51, 'DUSKUSDT': 23.55, 'AUDIOUSDT': 25.306, 'OGNUSDT': 25.524, 'GMTUSDT': 28.83, 'ENJUSDT': 33.073, 'STMXUSDT': 33.18, 'IOTXUSDT': 35.866, 'AVAXUSDT': 36.946, 'CHZUSDT': 37.128, 'CELRUSDT': 37.273, 'HNTUSDT': 38.779, 'CTSIUSDT': 41.108, 'HOTUSDT': 46.466, 'CHRUSDT': 61.091, 'MANAUSDT': 62.143, 'NKNUSDT': 70.636, 'ONEUSDT': 84.132, 'DENTUSDT': 99.973, 'DOGEUSDT': 121.447, 'SOLUSDT': 140.296, 'MATICUSDT': 161.846, 'FTMUSDT': 192.507, 'SANDUSDT': 203.219, 'AXSUSDT': 270.41}
#Current maximum backtest
draw_down = df_all.iloc[-1]/df_all.max()
print(draw_down.map(lambda x:round(x,3)).sort_values().to_dict())
{'ICPUSDT': 0.022, 'FILUSDT': 0.043, 'BAKEUSDT': 0.046, 'TLMUSDT': 0.05, 'LITUSDT': 0.053, 'LINAUSDT': 0.054, 'JASMYUSDT': 0.056, 'ALPHAUSDT': 0.062, 'RAYUSDT': 0.062, 'GRTUSDT': 0.067, 'DENTUSDT': 0.068, 'RSRUSDT': 0.068, 'XEMUSDT': 0.068, 'UNFIUSDT': 0.072, 'DYDXUSDT': 0.074, 'SUSHIUSDT': 0.074, 'OGNUSDT': 0.074, 'COMPUSDT': 0.074, 'NKNUSDT': 0.078, 'SKLUSDT': 0.08, 'DGBUSDT': 0.081, 'RLCUSDT': 0.085, 'REEFUSDT': 0.086, 'BANDUSDT': 0.086, 'HOTUSDT': 0.092, 'SRMUSDT': 0.092, 'RENUSDT': 0.092, 'BTSUSDT': 0.093, 'THETAUSDT': 0.094, 'FLMUSDT': 0.094, 'EOSUSDT': 0.095, 'TRBUSDT': 0.095, 'SXPUSDT': 0.095, 'ATAUSDT': 0.096, 'NEOUSDT': 0.096, 'FLOWUSDT': 0.097, 'YFIUSDT': 0.101, 'BALUSDT': 0.106, 'MASKUSDT': 0.106, 'ONTUSDT': 0.108, 'CELRUSDT': 0.108, 'AUDIOUSDT': 0.108, 'SCUSDT': 0.11, 'GALAUSDT': 0.113, 'GTCUSDT': 0.117, 'CTSIUSDT': 0.117, 'STMXUSDT': 0.118, 'DARUSDT': 0.118, 'ALICEUSDT': 0.119, 'SNXUSDT': 0.124, 'FTMUSDT': 0.126, 'BCHUSDT': 0.127, 'SFPUSDT': 0.127, 'ROSEUSDT': 0.128, 'DOGEUSDT': 0.128, 'RVNUSDT': 0.129, 'OCEANUSDT': 0.129, 'VETUSDT': 0.13, 'KSMUSDT': 0.131, 'ICXUSDT': 0.131, 'UNIUSDT': 0.131, 'ONEUSDT': 0.131, '1INCHUSDT': 0.134, 'IOTAUSDT': 0.139, 'C98USDT': 0.139, 'WAVESUSDT': 0.14, 'DUSKUSDT': 0.141, 'LINKUSDT': 0.143, 'DASHUSDT': 0.143, 'OMGUSDT': 0.143, 'PEOPLEUSDT': 0.143, 'AXSUSDT': 0.15, 'ENJUSDT': 0.15, 'QTUMUSDT': 0.152, 'SHIBUSDT': 0.154, 'ZENUSDT': 0.154, 'BLZUSDT': 0.154, 'ANTUSDT': 0.155, 'XECUSDT': 0.155, 'CHZUSDT': 0.158, 'RUNEUSDT': 0.163, 'ENSUSDT': 0.165, 'LRCUSDT': 0.167, 'CHRUSDT': 0.168, 'IOTXUSDT': 0.174, 'TOMOUSDT': 0.176, 'ALGOUSDT': 0.177, 'EGLDUSDT': 0.177, 'ARUSDT': 0.178, 'LTCUSDT': 0.178, 'HNTUSDT': 0.18, 'LPTUSDT': 0.181, 'SOLUSDT': 0.183, 'ARPAUSDT': 0.184, 'BELUSDT': 0.184, 'ETCUSDT': 0.186, 'ZRXUSDT': 0.187, 'AAVEUSDT': 0.187, 'CVCUSDT': 0.188, 'STORJUSDT': 0.189, 'COTIUSDT': 0.19, 'CELOUSDT': 0.191, 'SANDUSDT': 0.191, 'ADAUSDT': 0.192, 'HBARUSDT': 0.194, 'DOTUSDT': 0.195, 'XLMUSDT': 0.195, 'AVAXUSDT': 0.206, 'ANKRUSDT': 0.207, 'MTLUSDT': 0.208, 'MANAUSDT': 0.209, 'CRVUSDT': 0.213, 'API3USDT': 0.221, 'IOSTUSDT': 0.227, 'XRPUSDT': 0.228, 'BATUSDT': 0.228, 'MKRUSDT': 0.229, 'MATICUSDT': 0.229, 'CTKUSDT': 0.233, 'ZILUSDT': 0.233, 'WOOUSDT': 0.234, 'ATOMUSDT': 0.237, 'KLAYUSDT': 0.239, 'XTZUSDT': 0.245, 'IMXUSDT': 0.278, 'NEARUSDT': 0.285, 'GALUSDT': 0.299, 'APEUSDT': 0.305, 'ZECUSDT': 0.309, 'KAVAUSDT': 0.31, 'GMTUSDT': 0.327, 'FTTUSDT': 0.366, 'KNCUSDT': 0.401, 'ETHUSDT': 0.416, 'XMRUSDT': 0.422, 'BTCUSDT': 0.47, 'BNBUSDT': 0.476, 'TRXUSDT': 0.507, 'BNXUSDT': 0.64}

Pertama sekali, kita menggunakan kod yang paling mudah untuk mensimulasikan keadaan jatuh ke bawah, dan melihat harga pembubaran nilai kedudukan yang berbeza. Oleh kerana strategi sentiasa memegang kedudukan panjang, tidak ada risiko untuk naik. Modal awal adalah 1000, harga mata wang adalah 1, dan nisbah pelarasan adalah 0.01. Hasilnya adalah seperti berikut. Ia dapat dilihat bahawa risiko pembubaran panjang tidak rendah. Dengan leverage 1.5 kali, ia dapat menahan penurunan 50%. Memandangkan keadaan bawah relatif semasa, ia adalah risiko yang boleh diterima.

Nilai kedudukan Harga kedudukan panjang
300 0.035
500 0.133
800 0.285
1000 0.362
1500 0.51
2000 0.599
3000 0.711
5000 0.81
10000 0.904
for Hold_value in [300,500,800,1000,1500,2000,3000,5000,10000]:
    amount = Hold_value/1
    hold_price = 1
    margin = 1000
    Pct = 0.01
    i = 0
    while margin > 0:
        i += 1
        if i>500:
            break
        buy_price = (1-Pct)*Hold_value/amount
        buy_amount = Hold_value*Pct/buy_price
        hold_price = (amount * hold_price + buy_amount * buy_price) / (buy_amount + amount)
        amount += buy_amount
        margin = 1000 + amount * (buy_price - hold_price)
    print(Hold_value, round(buy_price,3))
300 0.035
500 0.133
800 0.285
1000 0.362
1500 0.51
2000 0.599
3000 0.711
5000 0.81
10000 0.904
#Still using the original backtesting engine
class Exchange:
    
    def __init__(self, trade_symbols, fee=0.0004, initial_balance=10000):
        self.initial_balance = initial_balance #Initial assets
        self.fee = fee
        self.trade_symbols = trade_symbols
        self.account = {'USDT':{'realised_profit':0, 'unrealised_profit':0, 'total':initial_balance, 'fee':0}}
        for symbol in trade_symbols:
            self.account[symbol] = {'amount':0, 'hold_price':0, 'value':0, 'price':0, 'realised_profit':0,'unrealised_profit':0,'fee':0}
            
    def Trade(self, symbol, direction, price, amount):
        
        cover_amount = 0 if direction*self.account[symbol]['amount'] >=0 else min(abs(self.account[symbol]['amount']), amount)
        open_amount = amount - cover_amount
        self.account['USDT']['realised_profit'] -= price*amount*self.fee #Deduct the handling fees
        self.account['USDT']['fee'] += price*amount*self.fee
        self.account[symbol]['fee'] += price*amount*self.fee

        if cover_amount > 0: #Close the position first
            self.account['USDT']['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount  #Profits
            self.account[symbol]['realised_profit'] += -direction*(price - self.account[symbol]['hold_price'])*cover_amount
            
            self.account[symbol]['amount'] -= -direction*cover_amount
            self.account[symbol]['hold_price'] = 0 if self.account[symbol]['amount'] == 0 else self.account[symbol]['hold_price']
            
        if open_amount > 0:
            total_cost = self.account[symbol]['hold_price']*direction*self.account[symbol]['amount'] + price*open_amount
            total_amount = direction*self.account[symbol]['amount']+open_amount
            
            self.account[symbol]['hold_price'] = total_cost/total_amount
            self.account[symbol]['amount'] += direction*open_amount
                    
    
    def Buy(self, symbol, price, amount):
        self.Trade(symbol, 1, price, amount)
        
    def Sell(self, symbol, price, amount):
        self.Trade(symbol, -1, price, amount)
        
    def Update(self, close_price): #Update of assets
        self.account['USDT']['unrealised_profit'] = 0
        for symbol in self.trade_symbols:
            self.account[symbol]['unrealised_profit'] = (close_price[symbol] - self.account[symbol]['hold_price'])*self.account[symbol]['amount']
            self.account[symbol]['price'] = close_price[symbol]
            self.account[symbol]['value'] = abs(self.account[symbol]['amount'])*close_price[symbol]
            self.account['USDT']['unrealised_profit'] += self.account[symbol]['unrealised_profit']
        self.account['USDT']['total'] = round(self.account['USDT']['realised_profit'] + self.initial_balance + self.account['USDT']['unrealised_profit'],6)

Pertama sekali, kami menguji semula prestasi strategi baki TRX. Retracement maksimum TRX dalam pusingan pasaran beruang ini agak kecil, jadi ia mempunyai spesifisiti tertentu. Data dipilih dari 5min K-line dari 2021 hingga sekarang, dengan modal awal 1000, nisbah penyesuaian adalah 0.01, nilai kedudukan adalah 2000, dan yuran pengendalian adalah 0.0002.

Harga awal TRX adalah 0.02676U, dan harga tertinggi dalam tempoh ini mencapai 0.18U. Ia kini sekitar 0.08U, dan turun naiknya sangat ganas.

Pengembalian akhir backtest adalah 4524U, yang sangat dekat dengan pulangan TRX pada 0.18. Leverage adalah lebih rendah daripada 2 kali dari awal dan akhirnya lebih rendah daripada 0.4, dan kemungkinan pembubaran juga semakin rendah dan lebih rendahr, di mana terdapat peluang untuk meningkatkan nilai kedudukan. Tetapi di bawah 2000U selalu pendapatan yang sama. Ini juga salah satu kelemahan strategi baki.

symbol = 'TRXUSDT'
df_trx = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_trx.close.plot(figsize=(15,6),grid=True);

png

#TRX balance strategy backtest
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_trx.iloc[0].open
res_list = [] #For storing intermediate results
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_trx.itertuples():
    buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
    sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    
    while row.low < buy_price:
        e.Buy(symbol,buy_price,pct*hold_value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    while row.high > sell_price:
        e.Sell(symbol,sell_price,pct*hold_value/sell_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx.index = pd.to_datetime(res_trx.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4524.226998288555 91.0
#Profit
res_trx.profit.plot(figsize=(15,6),grid=True);

png

#Actual leverage of occupancy
(res_trx.value/(res_trx.profit+1000)).plot(figsize=(15,6),grid=True);

png

Let's backtest WAVES lagi. mata wang ini agak istimewa. ia naik dari 6U kepada 60U pada mulanya, dan akhirnya jatuh kembali ke 8U semasa. keuntungan akhir adalah 4945, jauh lebih daripada keuntungan memegang mata wang tidak berubah.

symbol = 'WAVESUSDT'
df_waves = GetKlines(symbol=symbol,start='2021-1-1',end='2022-5-30',period='5m')
df_waves.close.plot(figsize=(15,6),grid=True);

png

#TWAVES balanced strategy backtest
hold_value = 2000
pct = 0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_waves.iloc[0].open
res_list = [] #For storing intermediate results
e.Buy(symbol,init_price,hold_value/init_price)
e.Update({symbol:init_price})
for row in df_waves.itertuples():
    buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
    sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    
    while row.low < buy_price:
        e.Buy(symbol,buy_price,pct*hold_value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    while row.high > sell_price:
        e.Sell(symbol,sell_price,pct*hold_value/sell_price)
        e.Update({symbol:row.close})
        buy_price = (1-pct)*hold_value/e.account[symbol]['amount']
        sell_price = (1+pct)*hold_value/e.account[symbol]['amount']
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves.index = pd.to_datetime(res_waves.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 4945.149323437233 178.0
df_waves.profit.plot(figsize=(15,6),grid=True);

png

By the way, prestasi strategi grid adalah backtested, jarak grid adalah 0.01, dan nilai grid adalah 10. Dalam kes hampir 10 kali peningkatan, kedua-dua WAVES dan TRX telah mengalami penarikan besar. Di antara mereka, WAVES telah menarik balik 5000U, dan TRX juga telah melebihi 3000U. Jika modal awal kecil, kedudukan hampir akan dicairkan.

#Grid strategy
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_waves.iloc[0].open
res_list = [] #For storing intermediate results
for row in df_waves.itertuples():
    buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])

    while row.low < buy_price:
        e.Buy(symbol,buy_price,value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) #The buy order price, since it is a pending order transaction, is also the final matching price=
    while row.high > sell_price:
        e.Sell(symbol,sell_price,value/sell_price)
        e.Update({symbol:row.close})
        sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_waves_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_waves_net.index = pd.to_datetime(res_waves_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 1678.0516101975015 70.0
res_waves_net.profit.plot(figsize=(15,6),grid=True);

png

#Grid strategy
pct = 0.01
value = 10*pct/0.01
e = Exchange([symbol], fee=0.0002, initial_balance=1000)
init_price =  df_trx.iloc[0].open
res_list = [] #For storing intermediate results
for row in df_trx.itertuples():
    buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])

    while row.low < buy_price:
        e.Buy(symbol,buy_price,value/buy_price)
        e.Update({symbol:row.close})
        buy_price = (value / pct - value) / (value / (pct * init_price) + e.account[symbol]['amount']) 
    while row.high > sell_price:
        e.Sell(symbol,sell_price,value/sell_price)
        e.Update({symbol:row.close})
        sell_price = (value / pct + value) / (value / (pct *init_price) + e.account[symbol]['amount'])
    if int(row.time)%(60*60*1000) == 0:
        e.Update({symbol:row.close})
        res_list.append([row.time, row.close, e.account[symbol]['amount'],e.account[symbol]['amount']*row.close, e.account['USDT']['total']-e.initial_balance])
res_trx_net = pd.DataFrame(data=res_list, columns=['time','price','amount','value','profit'])
res_trx_net.index = pd.to_datetime(res_trx_net.time,unit='ms')
print(pct,e.account['USDT']['realised_profit']+e.account['USDT']['unrealised_profit'] ,round(e.account['USDT']['fee'],0))
0.01 -161.06952570521656 37.0
res_trx_net.profit.plot(figsize=(15,6),grid=True);

png

Ringkasan

Kali ini, analisis backtest menggunakan garis K 5min, turun naik di tengah tidak sepenuhnya disimulasikan, jadi keuntungan sebenar harus sedikit lebih tinggi. Secara keseluruhan, strategi baki mempunyai risiko yang agak kecil, tidak takut meroket, dan tidak perlu menyesuaikan parameter, ia agak mudah digunakan dan sesuai untuk pengguna pemula. Strategi grid sangat sensitif terhadap penetapan harga awal dan memerlukan beberapa penilaian pasaran. Dalam jangka panjang, risiko pergi pendek adalah tinggi. Pusingan pasaran beruang semasa telah stabil di bahagian bawah untuk beberapa waktu, banyak mata wang kini turun lebih daripada 90% dari paras tertinggi mereka, jika anda optimis tentang beberapa mata wang, ini adalah masa yang baik untuk memasuki pasaran, anda mungkin ingin membuka strategi baki untuk membeli bahagian bawah, menambah sedikit leverage dan mendapat keuntungan dari turun naik harga dan kenaikan.

Pertempuran Binance Thousand League akan memberikan akses percuma kepada strategi keseimbangan kekal, dan semua orang dialu-alukan untuk mengalaminya.


Berkaitan

Lebih lanjut