No espaço de negociação de ativos de criptomoedas, a obtenção e análise de dados de mercado, as taxas de consulta e o monitoramento dos movimentos de ativos da conta são operações críticas.
Ao escrever um programa de estratégia quantitativa de negociação na plataforma FMZ, a primeira coisa que você precisa fazer quando você encontrar um requisito é analisá-lo.
GET https://api.binance.com/api/v3/ticker/price
- Não.
Na plataforma FMZ, use oHttpQuery
Função para aceder à interface do ticker de troca (interface pública que não requer uma assinatura).price fluctuations (%) = (current price - initial price) / initial price * 100
em Depois de resolvermos o problema e definirmos o programa, começámos a trabalhar no projeto.
var dictSymbolsPrice = {}
function main() {
while (true) {
// GET https://api.binance.com/api/v3/ticker/price
try {
var arr = JSON.parse(HttpQuery("https://api.binance.com/api/v3/ticker/price"))
if (!Array.isArray(arr)) {
Sleep(5000)
continue
}
var ts = new Date().getTime()
for (var i = 0; i < arr.length; i++) {
var symbolPriceInfo = arr[i]
var symbol = symbolPriceInfo.symbol
var price = symbolPriceInfo.price
if (typeof(dictSymbolsPrice[symbol]) == "undefined") {
dictSymbolsPrice[symbol] = {name: symbol, data: []}
}
dictSymbolsPrice[symbol].data.push({ts: ts, price: price})
}
} catch(e) {
Log("e.name:", e.name, "e.stack:", e.stack, "e.message:", e.message)
}
// Calculate price fluctuations
var tbl = {
type : "table",
title : "Price fluctuations",
cols : ["trading pair", "current price", "price 4 hours ago", "price fluctuations", "data length", "earliest data time", "latest data time"],
rows : []
}
for (var symbol in dictSymbolsPrice) {
var data = dictSymbolsPrice[symbol].data
if (data[data.length - 1].ts - data[0].ts > 1000 * 60 * 60 * 4) {
dictSymbolsPrice[symbol].data.shift()
}
data = dictSymbolsPrice[symbol].data
dictSymbolsPrice[symbol].percentageChange = (data[data.length - 1].price - data[0].price) / data[0].price * 100
}
var entries = Object.entries(dictSymbolsPrice)
entries.sort((a, b) => b[1].percentageChange - a[1].percentageChange)
for (var i = 0; i < entries.length; i++) {
if (i > 9) {
break
}
var name = entries[i][1].name
var data = entries[i][1].data
var percentageChange = entries[i][1].percentageChange
var currPrice = data[data.length - 1].price
var currTs = _D(data[data.length - 1].ts)
var prePrice = data[0].price
var preTs = _D(data[0].ts)
var dataLen = data.length
tbl.rows.push([name, currPrice, prePrice, percentageChange + "%", dataLen, preTs, currTs])
}
LogStatus(_D(), "\n", "`" + JSON.stringify(tbl) + "`")
Sleep(5000)
}
}
- 2. Main function main()
2.1. Infinite loop
enquanto (verdadeiro) { - Não. - Não.
The program continuously monitors the Binance API trading pair prices through an infinite loop.
2.2. Get price information
var arr = JSON.parse ((HttpQuery(
Get the current price information of the trading pair via Binance API. If the return is not an array, wait for 5 seconds and retry.
2.3. Update price data
para (var i = 0; i < arr.length; i++) { - Não. - Não.
Iterate through the array of obtained price information and update the data in dictSymbolsPrice. For each trading pair, add the current timestamp and price to the corresponding data array.
2.4. Exception processing
- Não, não.
Registo ((
Catch exceptions and log the exception information to ensure that the program can continue to execute.
2.5. Calculate the price fluctuations
para (símbolo var em dictSymbolsPrice) { - Não. - Não.
Iterate through dictSymbolsPrice, calculate the price fluctuations of each trading pair, and remove the earliest data if it is longer than 4 hours.
2.6. Sort and generate tables
Var entries = Object.entries ((dictSymbolsPrice) entries.sort (((a, b) => b[1].percentagemMudança - a[1].percentagemMudança)
para (var i = 0; i < entries.length; i++) { - Não. - Não.
Sort the trading pairs in descending order of their price fluctuations and generate a table containing information about the trading pairs.
2.7. Log output and delay
LogStatus(_D(), " + JSON.stringify(tbl) + "
Output the table and the current time in the form of a log and wait for 5 seconds to continue the next round of the loop.
The program obtains the real-time price information of the trading pair through Binance API, then calculates the price fluctuations, and outputs it to the log in the form of a table. The program is executed in a continuous loop to realize the function of real-time monitoring of the prices of trading pairs. Note that the program includes exception processing to ensure that the execution is not interrupted by exceptions when obtaining price information.
### Live Trading Running Test
![FMZ Quant: An Analysis of Common Requirements Design Examples in the Cryptocurrency Market (I)](/upload/asset/28e4c99554fea236762df.png)
Since data can only be collected bit by bit at the beginning, it is not possible to calculate the price fluctuations on a rolling basis without collecting enough data for a 4-hour window. Therefore, the initial price is used as the base for calculation, and after collecting enough data for 4 hours, the oldest data will be eliminated in order to maintain the 4-hour window for calculating the price fluctuations.
## 2. Check the full variety of funding rates for Binance U-denominated contracts
Checking the funding rate is similar to the above code, first of all, we need to check the Binance API documentation to find the funding rate related interface. Binance has several interfaces that allow us to query the rate of funds, here we take the interface of the U-denominated contract as an example:
GEThttps://fapi.binance.com/fapi/v1/premiumIndex
### Code Implementation
Since there are so many contracts, we're exporting the top 10 largest funding rates here.
função principal (() {
enquanto (verdadeiro) {
// GEThttps://fapi.binance.com/fapi/v1/premiumIndexTente.
var arr = JSON.parse ((HttpQuery(
arr.sort((a, b) => parseFloat(b.lastFundingRate) - parseFloat(a.lastFundingRate))
var tbl = {
type: "table",
title: "Top 10 funding rates for U-denominated contracts",
cols: ["contracts", "funding rate", "marked price", "index price", "current rate time", "next rate time"],
rows: []
}
for (var i = 0; i < 9; i++) {
var obj = arr[i]
tbl.rows.push([obj.symbol, obj.lastFundingRate, obj.markPrice, obj.indexPrice, _D(obj.time), _D(obj.nextFundingTime)])
}
LogStatus(_D(), "\n", "`" + JSON.stringify(tbl) + "`")
} catch(e) {
Log("e.name:", e.name, "e.stack:", e.stack, "e.message:", e.message)
}
Sleep(1000 * 10)
}
}
The returned data structure is as follows, and check the Binance documentation, it shows that lastFundingRate is the funding rate we want.
- O quê?
Live trading running test:
![FMZ Quant: An Analysis of Common Requirements Design Examples in the Cryptocurrency Market (I)](/upload/asset/28d94562e5a8199b5446a.png)
### Getting OKX exchange contract funding rates of Python version
A user has asked for a Python version of the example, and it's for the OKX exchange. Here is an example:
The data returned by the interface ```https://www.okx.com/priapi/v5/public/funding-rate-all?currencyType=1```:
- O quê?
Specific code:
Pedidos de importação importar json do tempo importado do sono a partir da data-hora da importação data-hora
def main (():
enquanto True:
#https://www.okx.com/priapi/v5/public/funding-rate-all?currencyType=1Tente:
resposta = solicitações.get(
arr.sort(key=lambda x: float(x["fundingRate"]), reverse=True)
tbl = {
"type": "table",
"title": "Top 10 funding rates for U-denominated contracts",
"cols": ["contracts", "next rate", "minimum", "current", "maximum"],
"rows": []
}
for i in range(min(9, len(arr))):
obj = arr[i]
row = [
obj["instId"],
obj["nextFundingRate"],
obj["minFundingRate"],
obj["fundingRate"],
obj["maxFundingRate"]
]
tbl["rows"].append(row)
LogStatus(_D(), "\n", '`' + json.dumps(tbl) + '`')
except Exception as e:
Log(f"Error: {str(e)}")
sleep(10)
Esses exemplos fornecem ideias básicas de design e métodos de chamada, o projeto real pode precisar fazer alterações e extensões apropriadas com base nas necessidades específicas.