O recurso está a ser carregado... Carregamento...

Python simplificou o quadro de estratégia de tendências MACD multi-variedade

Autora:Bem-estar, Criado: 2018-08-23 11:42:58, Atualizado: 2018-08-23 11:45:24

Pythons super-simplificado multi-variedade MACD estrutura de estratégia de tendências, o código é super-simplificado, e as anotações são super-detalhada.23beta) modelo, o código do modelo também possui uma versão em linguagem JavaScript do comentário (lógica é a mesma).

Com base nesta estrutura, a portabilidade para o mercado de moeda digital é muito simples. Com apenas algumas alterações e extensões, você pode se estender para uma estratégia de negociação muito poderosa baseada na lógica MACD.

Observe que esta estratégia é apenas uma estrutura de código para lhe dar uma estrutura básica para expandir seu espaço de estratégia. Estudar esta estrutura lógica de estratégia da plataforma FMZ pode ajudá-lo a desenvolver rapidamente a estratégia que deseja. O propósito da estrutura de design é economizar seu tempo. Na plataforma FMZ, não apenas os detalhes da tecnologia de interface subjacente, mas também o nível de estratégia. A estrutura básica também o ajudamos a resolver.

No futuro, teremos mais modelos de estratégia para a estrutura básica, fazendo isso, você pode realmente prestar atenção à própria estratégia, e apenas se concentrar na construção da função onTick em nossa plataforma FMZ.

class Trader:                                   # Declare a python class 
    def __init__(self, q, symbol):              # The constructor of the Trader class, the parameter self (representing the object after the class is instantiated), 
                                                # q (the transaction processing object constructed by reference to the commodity futures trading class library template),
                                                # symbol (commodity futures contract code)
        self.q = q                              # Add the attribute q to the object constructed by the constructor and assign it with the parameter q. 
        self.symbol = symbol                    # As above, add the symbol attribute to the constructed object and assign it with the parameter symbol.
        self.position = 0                       # Add the attribute position assignment 0, which is used to record the number of positions.
        self.isPending = False                  # Add the attribute isPending to assign False, which is used to mark the state of the object and whether it is suspended.

    def onOpen(self, task, ret):                # The class member function performs the callback function after the completion of the open position (that is, after the object q that
                                                # simulates the multi-threaded transaction completes the current task, the callback to the onOpen function handles some post-opening work.)
        if ret:                                 # The transaction processing object q will call back onOpen after processing the transaction task, and pass in 2 parameters.
                                                # The first one is received by the parameter task, the specific data is the executed transaction task data,
                                                # and the second parameter is the transaction completion.
                                                # If ret is valid data (the transaction is unsuccessful, ret is None), then the if block code is processed.
            self.position = ret['position']['Amount'] * (1 if (ret['position']['Type'] == PD_LONG or ret['position']['Type'] == PD_LONG_YD) else -1)
                                                # Assign the value of the attribute position of the object that calls the function, ret['position']['Amount'] is the number of
                                                # positions after the transaction, according to ret['position']['Type'], the position type is equal to PD_LONG (holding long positions)
                                                # Or PD_LONG_YD (short position) to choose ret['position']['Amount'] multiplied by 1 or -1, and finally assign the number 
                                                # of positions to parameter position, (the role is to distinguish between long positions or short positions by parameter position)
        Log(task["desc"], "Position:", self.position, ret)  # Print multiple items: the description of the data task dictionary of the task executed by q, 
                                                            # the assigned position, the completion of the transaction processed by the q object (current position information)
        self.isPending = False                  # Assigning value to isPending means that the current variety trading logic is in a non-suspended state and can accept tasks.

    def onCover(self, task, ret):               # The callback function to be executed after the closing task is completed, the parameters are the same as onOpen
        self.isPending = False                  # Set the trading logic of isPending to False, which is the current variety to be non-suspended and accept the task.
        self.position = 0                       # The variable position of the record position is assigned a value of 0, that is, there is no position.
        Log(task["desc"], ret)                  # Print the transaction description object q the task description (desc) of this processing, the result of the completion of the processing (ret)

    def onTick(self):                           # The main trading logic, the core of the MACD strategy.
        if self.isPending:                      # If the isPending attribute of the current logical object constructed by the Trader class is True, it means 
                                                # that the current transaction task is executing in the transaction processing object q queue.
            return                              # The trading logic is in a suspended state and no processing is done.
        ct = exchange.SetContractType(self.symbol)   # According to the constructor passed in the symbol assigned to the object member property symbol passed to the API function 
                                                     # ie: the SetContractType function of the exchange object exchange, used to set the contract type of the operation
        if not ct:                              # The SetContractType function will return the details of the contract after the transaction contract code (symbol) succeeds.
                                                # If it returns None, ie not ct is true, it will return immediately and wait for the next round.
            return

        r = exchange.GetRecords()               # Declare the variable r (used to store the K line data), call the API function GetRecords to get the set K line data of the contract, and assign it to r.
        if not r or len(r) < 35:                # If r is None or r is less than 35 (because the MACD indicator is to be calculated, 
                                                # there must be a sufficient number of K-bars, less than 35 cannot be calculated)
            return                              # Return immediately, the next round of processing.
        macd = TA.MACD(r)                       # Call the API indicator function TA.MACD, pass in the argument r, calculate the MACD indicator data, and assign it to the variable macd. 
                                                # (The data that TA.MACD successfully returns is a two-dimensional array [dif, dea, quantum column]) 
                                                # Do not understand dif, dea can google MACD indicators
        diff = macd[0][-2] - macd[1][-2]        # Calculate the difference between dif and dea (note that the calculation here uses the calculated dif and dea of the penultimate bar, 
                                                # because the K line of the last bar of the last number is constantly changing, and the macd indicator is always changing, only the 
                                                # the penultimate bar is accurate)
        if abs(diff) > 0 and self.position == 0:     # Open position, if the absolute value of the indicator (dif - dea) is greater than 0 at this moment 
                                                     # and there is no position (ie: position is equal to 0)
            self.isPending = True                    # Change state is set to suspend state, isPending = True 
            self.q.pushTask(exchange, self.symbol, ("buy" if diff > 0 else "sell"), 1, self.onOpen)      # Call the member function pushTask of the transaction processing object q to issue the
                                                                                                         # open trading task, parameter: exchange trading platform object (passing)
                                                     # Self.symbol contract code (passing when constructing), set "buy" or "sell" according to whether diff is greater than 0 or less than 0. 1 
                                                     # This parameter refers to the order quantity 1 unit, self.onOpen reference to the incoming callback function  
        if abs(diff) > 0 and ((diff > 0 and self.position < 0) or (diff < 0 and self.position > 0)):     # Closing the position, if the absolute value of the indicator (dif - dea) is greater 
                                                                                                         # than 0 at this moment and the condition after "and" is established, the code in the if block is executed.
                                                # Diff is greater than 0 and holds a short position or diff is less than 0 and holds long positions, all of which are closed position condition.
            self.isPending = True               # Set to suspend state.
            self.q.pushTask(exchange, self.symbol, ("closebuy" if self.position > 0 else "closesell"), 1, self.onCover)    # Send the closing trading task, the parameters are the same as the above to 
                                                                                                                           # send the opening position task.

def main():                                     # Entry function
    q = ext.NewTaskQueue()                      # The export function (ie interface) of the Python version of the commodity futures trading class library template is called,
                                                # and ext.NewTaskQueue returns a constructed trading processing object. Reference and assign it to variable q 
    Log(_C(exchange.GetAccount))                # Start calling the _C fault-tolerant function, passing in the API for fault-tolerant processing: GetAccount function, 
                                                # return account information and output to the log by the Log function.
    tasks = []                                  # Declare an empty array tasks.
    for symbol in ["MA701", "rb1701"]:          # Traversing the elements in the array ["MA701", "rb1701"], each time the element symbol and the transaction processing object 
                                                # q are passed as parameters to the constructor of the Trader class to construct the trading logic object.
        tasks.append(Trader(q, symbol))         # The constructed trading logic object is pushed into the tasks array. Used to loop through the execution process.
    while True:                                 # Set a while infinite loop
        if exchange.IO("status"):               # Call the API function IO every time, pass the parameter "status" to detect the connection status with the futures company's 
                                                # front-end server (CTP protocol), return True, connect the transaction server and the market server.
            for t in tasks:                     # Traversing the tasks array, calling the member function onTick of the constructed property of the Trader class,
                                                # constantly checking the market, opening and closing the position.
                t.onTick()                      # See the onTick function in the Trader class
            q.poll()                            # The member function poll of the transaction processing object q is called to process the transaction task in the queue within the q object.
        Sleep(1000)                             # The program pauses for a period of time each time the while loop (1000): pause for 1 second (1000 milliseconds) to avoid accessing the API too frequently.

Mais informações

Inventor quantificado - sonho pequeno- Óptimo!

Inventor quantificado - sonho pequenoNão tem de quê!

Bem-estar- Obrigado. - Obrigado.