Esta estratégia combina o indicador estocástico para determinar os pontos de reversão de sobrecompra e sobrevenda e o indicador MACD para identificar reversões de tendência, com o objetivo de comprar baixo e vender alto através da negociação de reversão.
Usar o indicador estocástico para identificar condições de sobrecompra e sobrevenda.
Ir longo em cruzes de ouro do MACD e ir curto em cruzes de morte do MACD.
Tomar posições longas ou curtas quando a reversão estocástica estiver alinhada com os sinais de reversão do MACD.
Implementar stop loss de trail. Depois de entrar em uma tendência, quando o preço atinge uma certa porcentagem de lucro, o stop de trail é acionado. O nível de stop então segue o canal de preço ascendente.
As posições existentes são fechadas e o stop loss reiniciado quando aparece um novo sinal de reversão.
A confirmação de múltiplos indicadores melhora a precisão do sinal
O estocástico identifica efetivamente zonas de sobrecompra/supervenda
MACD capta a reversão da média móvel mais cedo
O trailing stop bloqueia os lucros bem
Dados de backtesting suficientes com sinais estratégicos claros
Parâmetros otimizáveis para fácil ajuste
Dificuldade de otimização de múltiplos indicadores
Os sinais de reversão podem ser mal avaliados e necessitam de validação
São necessários mais dados para testar e otimizar as paradas de atraso
Natureza de atraso do stochastic e do MACD
O comércio frequente pode levar a custos mais elevados
Adicionar mais indicadores para construir um sistema de negociação robusto
Teste diferentes períodos de parâmetros para encontrar combinações ideais
Desenvolver parâmetros adaptativos que se atualizem em tempo real
Definição de perda de retenção para limitar a retenção máxima
Incorporar o volume para evitar falsos sinais de divergência
Considerar o impacto dos custos de negociação e estabelecer um objetivo de lucro mínimo
Esta estratégia combina os pontos fortes do estocástico e do MACD na identificação de pontos de negociação de reversão favoráveis. O mecanismo de trailing stop também bloqueia efetivamente os lucros. Mas a negociação de reversão ainda carrega riscos inerentes que precisam de validação de mais indicadores e otimização de parâmetros adicionais. Com parâmetros estáveis e gestão adequada de capital, esta estratégia pode se tornar um sistema de negociação de curto prazo altamente eficiente.
/*backtest start: 2022-09-14 00:00:00 end: 2023-06-24 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 //////////////////////////////////////////////////////////// // @CoinDigger // // Credits for the base strategy go to HPotter // // I've just added a trail stop, basic leverage simulation and stop loss // //////////////////////////////////////////////////////////// // Copyright by HPotter v1.0 28/01/2021 // This is combo strategies for get a cumulative signal. // // First strategy // This System was created from the Book "How I Tripled My Money In The // Futures Market" by Ulf Jensen, Page 183. This is reverse type of strategies. // The strategy buys at market, if close price is higher than the previous close // during 2 days and the meaning of 9-days Stochastic Slow Oscillator is lower than 50. // The strategy sells at market, if close price is lower than the previous close price // during 2 days and the meaning of 9-days Stochastic Fast Oscillator is higher than 50. // // Second strategy // MACD – Moving Average Convergence Divergence. The MACD is calculated // by subtracting a 26-day moving average of a security's price from a // 12-day moving average of its price. The result is an indicator that // oscillates above and below zero. When the MACD is above zero, it means // the 12-day moving average is higher than the 26-day moving average. // This is bullish as it shows that current expectations (i.e., the 12-day // moving average) are more bullish than previous expectations (i.e., the // 26-day average). This implies a bullish, or upward, shift in the supply/demand // lines. When the MACD falls below zero, it means that the 12-day moving average // is less than the 26-day moving average, implying a bearish shift in the // supply/demand lines. // A 9-day moving average of the MACD (not of the security's price) is usually // plotted on top of the MACD indicator. This line is referred to as the "signal" // line. The signal line anticipates the convergence of the two moving averages // (i.e., the movement of the MACD toward the zero line). // Let's consider the rational behind this technique. The MACD is the difference // between two moving averages of price. When the shorter-term moving average rises // above the longer-term moving average (i.e., the MACD rises above zero), it means // that investor expectations are becoming more bullish (i.e., there has been an // upward shift in the supply/demand lines). By plotting a 9-day moving average of // the MACD, we can see the changing of expectations (i.e., the shifting of the // supply/demand lines) as they occur. // // WARNING: // - For purpose educate only // - This script to change bars colors. //////////////////////////////////////////////////////////// Reversal123(Length, KSmoothing, DLength, Level) => vFast = sma(stoch(close, high, low, Length), KSmoothing) vSlow = sma(vFast, DLength) pos = 0.0 pos := iff(close[2] < close[1] and close > close[1] and vFast < vSlow and vFast > Level, 1, iff(close[2] > close[1] and close < close[1] and vFast > vSlow and vFast < Level, -1, nz(pos[1], 0))) pos MACD(fastLength,slowLength,signalLength) => pos = 0.0 fastMA = ema(close, fastLength) slowMA = ema(close, slowLength) macd = fastMA - slowMA signal = sma(macd, signalLength) pos:= iff(signal < macd , 1, iff(signal > macd, -1, nz(pos[1], 0))) pos strategy(title="Combo Backtest 123 Reversal & MACD Crossover with Trail and Stop", shorttitle="ComboReversal123MACDWithStop", overlay = false, precision=8,default_qty_type=strategy.percent_of_equity, default_qty_value=100, initial_capital=100, currency="USD", commission_type=strategy.commission.percent, commission_value=0.075) leverage=input(2,"leverage",step=1) percentOfEquity=input(100,"percentOfEquity",step=1) sl_trigger = input(10, title='Stop Trail Trigger %', type=input.float)/100 sl_trail = input(5, title='Stop Trail %', type=input.float)/100 sl_inp = input(10, title='Stop Loss %', type=input.float)/100 Length = input(100, minval=1) KSmoothing = input(1, minval=1) DLength = input(2, minval=1) Level = input(1, minval=1) //------------------------- fastLength = input(10, minval=1) slowLength = input(19,minval=1) signalLength=input(24,minval=1) xSeria = input(title="Source", type=input.source, defval=close) reverse = input(false, title="Trade reverse") //////////////////////////////////////////////////////////////////////////////// // BACKTESTING RANGE // From Date Inputs fromDay = input(defval = 1, title = "From Day", minval = 1, maxval = 31) fromMonth = input(defval = 1, title = "From Month", minval = 1, maxval = 12) fromYear = input(defval = 2015, title = "From Year", minval = 1970) // To Date Inputs toDay = input(defval = 1, title = "To Day", minval = 1, maxval = 31) toMonth = input(defval = 1, title = "To Month", minval = 1, maxval = 12) toYear = input(defval = 2999, title = "To Year", minval = 1970) // Calculate start/end date and time condition startDate = timestamp(fromYear, fromMonth, fromDay, 00, 00) finishDate = timestamp(toYear, toMonth, toDay, 00, 00) time_cond = time >= startDate and time <= finishDate //////////////////////////////////////////////////////////////////////////////// ////////////////////// STOP LOSS CALCULATIONS ////////////////////////////// /////////////////////////////////////////////////// cond() => barssince(strategy.position_size[1] == 0 and (strategy.position_size > 0 or strategy.position_size < 0)) > 0 lastStopLong = 0.0 lastStopLong := lastStopLong[1] != strategy.position_avg_price - (strategy.position_avg_price * (sl_inp)) and lastStopLong[1] != 0.0 ? lastStopLong[1] : strategy.position_size > 0 ? (cond() and close > strategy.position_avg_price + (strategy.position_avg_price * (sl_trigger)) ? strategy.position_avg_price + (strategy.position_avg_price * (sl_trail)) : strategy.position_avg_price - (strategy.position_avg_price * (sl_inp))) : 0 lastStopShort = 0.0 lastStopShort := lastStopShort[1] != strategy.position_avg_price + (strategy.position_avg_price * (sl_inp)) and lastStopShort[1] != 9999999999.0 ? lastStopShort[1] : strategy.position_size < 0 ? (cond() and close < strategy.position_avg_price - (strategy.position_avg_price * (sl_trigger)) ? strategy.position_avg_price - (strategy.position_avg_price * (sl_trail)) : strategy.position_avg_price + (strategy.position_avg_price * (sl_inp))) : 9999999999.0 longStopPrice = 0.0 longStopPrice2 = 0.0 longStopPrice3 = 0.0 shortStopPrice = 0.0 longStopPrice := if strategy.position_size > 0 originalStop = strategy.position_avg_price - (strategy.position_avg_price * (sl_inp)) trigger = strategy.position_avg_price + (strategy.position_avg_price * (sl_trigger)) trail = strategy.position_avg_price + (strategy.position_avg_price * (sl_trail)) stopValue = high > trigger ? trail : 0 max(stopValue, originalStop, longStopPrice[1]) else 0 longStopPrice2 := if strategy.position_size > 0 originalStop = strategy.position_avg_price - (strategy.position_avg_price * (sl_inp)) trigger = strategy.position_avg_price + (strategy.position_avg_price * (sl_trigger*2)) trail = strategy.position_avg_price + (strategy.position_avg_price * (sl_trail*2)) stopValue = high > trigger ? trail : 0 max(stopValue, originalStop, longStopPrice2[1]) else 0 longStopPrice3 := if strategy.position_size > 0 originalStop = strategy.position_avg_price - (strategy.position_avg_price * (sl_inp)) trigger = strategy.position_avg_price + (strategy.position_avg_price * (sl_trigger*4)) trail = strategy.position_avg_price + (strategy.position_avg_price * (sl_trail*3)) stopValue = high > trigger ? trail : 0 max(stopValue, originalStop, longStopPrice3[1]) else 0 shortStopPrice := if strategy.position_size < 0 originalStop = strategy.position_avg_price + (strategy.position_avg_price * (sl_inp)) trigger = strategy.position_avg_price - (strategy.position_avg_price * (sl_trigger)) trail = strategy.position_avg_price - (strategy.position_avg_price * (sl_trail)) stopValue = low < trigger ? trail : 999999 min(stopValue, originalStop, shortStopPrice[1]) else 999999 /////////////////////////////////////////////////// /////////////////////////////////////////////////// posReversal123 = Reversal123(Length, KSmoothing, DLength, Level) posMACD = MACD(fastLength,slowLength, signalLength) pos = iff(posReversal123 == 1 and posMACD == 1 , 1, iff(posReversal123 == -1 and posMACD == -1, -1, 0)) possig = pos quantity = max(0.000001,min(((strategy.equity*(percentOfEquity/100))*leverage/open),100000000)) if (possig == 1 and time_cond) strategy.entry("Long", strategy.long, qty=quantity) if (possig == -1 and time_cond) strategy.entry("Short", strategy.short, qty=quantity) if (strategy.position_size > 0 and possig == -1 and time_cond) strategy.close_all() if (strategy.position_size < 0 and possig == 1 and time_cond) strategy.close_all() if ((strategy.position_size < 0 or strategy.position_size > 0) and possig == 0) strategy.close_all() //EXIT TRADE @ TSL if strategy.position_size > 0 strategy.exit(id="Long", stop=longStopPrice) if strategy.position_size < 0 strategy.exit(id="Short", stop=shortStopPrice)