Esta estratégia gera sinais de compra e venda com base em inversões de múltiplos indicadores de tendência, incluindo TDI, TCF, TTF e TII. A estratégia permite selecionar qual sinal de indicador utilizar para entradas e saídas.
O indicador TDI é construído usando a dinâmica do preço com técnicas de soma e suavização.
O indicador TCF mede mudanças positivas e negativas nos preços para avaliar as forças de alta e baixa.
O indicador TTF compara o poder dos preços mais altos e mais baixos para determinar a tendência.
O TII combina a média móvel e as faixas de preços para identificar inversões de tendência.
A lógica de entrada longa e próxima seleciona os sinais adequados com base no indicador configurado.
A estratégia incorpora vários indicadores de negociação de tendências comumente utilizados, o que permite flexibilidade para se adaptar às condições de mercado em evolução.
Os principais riscos que esta estratégia enfrenta são:
Os riscos podem ser reduzidos:
A estratégia pode ser reforçada em vários domínios:
A combinação de múltiplos indicadores de reversão de tendência e de configurações de otimização permite adaptar esta estratégia a diferentes ambientes de mercado para operar em pontos de virada de tendência.A chave é encontrar os parâmetros e indicadores ótimos enquanto se controla o risco.Otimizações e validações contínuas podem construir uma estratégia alfa estável.
/*backtest start: 2023-11-13 00:00:00 end: 2023-11-15 03:00:00 period: 5m basePeriod: 1m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 // // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © kruskakli // // Here is a collection of Trend Indicators as defined by M.H Pee and presented // in various articles of the "STOCKS & COMMODITIES Magazine" // // The actual implementation of the indicators here are made by: everget // // I have gather them here so that they easily can be tested. // // My own test was made using 15 companies from the OMXS30 list // during the time period of 2016-2018, and I only went LONG. // // The result was as follows: // // Average Std.Dev // profit // TDI 3.04% 5.97 // TTF 1.22%. 5.73 // TII 1.07% 6.2 // TCF 0.32% 2.68 // strategy("M.H Pee indicators", overlay=true) use = input(defval="TDI", title="Use Indicator", type=input.string, options=["TDI","TCF","TTF","TII"]) src = close // // TDI // length = input(title="Length", type=input.integer, defval=20) mom = change(close, length) tdi = abs(sum(mom, length)) - sum(abs(mom), length * 2) + sum(abs(mom), length) // Direction Indicator tdiDirection = sum(mom, length) tdiLong = crossover(tdiDirection, tdi) tdiXLong = crossunder(tdiDirection, tdi) // // TCF // tcflength = input(title="Length", type=input.integer, defval=35) plusChange(src) => change_1 = change(src) change(src) > 0 ? change_1 : 0.0 minusChange(src) => change_1 = change(src) change(src) > 0 ? 0.0 : -change_1 plusCF = 0.0 plusChange__1 = plusChange(src) plusCF := plusChange(src) == 0 ? 0.0 : plusChange__1 + nz(plusCF[1]) minusCF = 0.0 minusChange__1 = minusChange(src) minusCF := minusChange(src) == 0 ? 0.0 : minusChange__1 + nz(minusCF[1]) plusTCF = sum(plusChange(src) - minusCF, tcflength) minusTCF = sum(minusChange(src) - plusCF, tcflength) tcfLong = plusTCF > 0 tcfXLong = plusTCF < 0 // // TTF // ttflength = input(title="Lookback Length", type=input.integer, defval=15) hh = highest(length) ll = lowest(length) buyPower = hh - nz(ll[length]) sellPower = nz(hh[length]) - ll ttf = 200 * (buyPower - sellPower) / (buyPower + sellPower) ttfLong = crossover(ttf, 100) ttfXLong = crossunder(ttf, -100) // // TII // majorLength = input(title="Major Length", type=input.integer, defval=60) minorLength = input(title="Minor Length", type=input.integer, defval=30) upperLevel = input(title="Upper Level", type=input.integer, defval=80) lowerLevel = input(title="Lower Level", type=input.integer, defval=20) sma = sma(src, majorLength) positiveSum = 0.0 negativeSum = 0.0 for i = 0 to minorLength - 1 by 1 price = nz(src[i]) avg = nz(sma[i]) positiveSum := positiveSum + (price > avg ? price - avg : 0) negativeSum := negativeSum + (price > avg ? 0 : avg - price) negativeSum tii = 100 * positiveSum / (positiveSum + negativeSum) tiiLong = crossover(tii, 80) tiiXLong = crossunder(tii,80) // // LOGIC // enterLong = (use == "TDI" and tdiLong) or (use == "TCF" and tcfLong) or (use == "TTF" and ttfLong) or (use == "TII" and tiiLong) exitLong = (use == "TDI" and tdiXLong) or (use == "TCF" and tcfXLong) or (use == "TTF" and ttfXLong) or (use == "TII" and tiiXLong) // Time range for Back Testing btStartYear = input(title="Back Testing Start Year", type=input.integer, defval=2016) btStartMonth = input(title="Back Testing Start Month", type=input.integer, defval=1) btStartDay = input(title="Back Testing Start Day", type=input.integer, defval=1) startTime = timestamp(btStartYear, btStartMonth, btStartDay, 0, 0) btStopYear = input(title="Back Testing Stop Year", type=input.integer, defval=2028) btStopMonth = input(title="Back Testing Stop Month", type=input.integer, defval=12) btStopDay = input(title="Back Testing Stop Day", type=input.integer, defval=31) stopTime = timestamp(btStopYear, btStopMonth, btStopDay, 0, 0) window() => time >= startTime and time <= stopTime ? true : false riskPerc = input(title="Max Position %", type=input.float, defval=20, step=0.5) maxLossPerc = input(title="Max Loss Risk %", type=input.float, defval=5, step=0.25) // Average True Range (ATR) measures market volatility. // We use it for calculating position sizes. atrLen = input(title="ATR Length", type=input.integer, defval=14) stopOffset = input(title="Stop Offset", type=input.float, defval=1.5, step=0.25) limitOffset = input(title="Limit Offset", type=input.float, defval=1.0, step=0.25) atrValue = atr(atrLen) // Calculate position size maxPos = floor((strategy.equity * (riskPerc/100)) / src) // The position sizing algorithm is based on two parts: // a certain percentage of the strategy's equity and // the ATR in currency value. riskEquity = (riskPerc / 100) * strategy.equity // Translate the ATR into the instrument's currency value. atrCurrency = (atrValue * syminfo.pointvalue) posSize0 = min(floor(riskEquity / atrCurrency), maxPos) posSize = posSize0 < 1 ? 1 : posSize0 if (window()) strategy.entry("Long", long=true, qty=posSize0, when=enterLong) strategy.close_all(when=exitLong)