Esta estratégia constrói uma faixa de preços suave usando médias móveis suaves e integra várias médias móveis suaves para filtrar a tendência em tempo real.
Ao construir uma faixa de preços suave para capturar as tendências de preços e integrar um filtro de média móvel para confirmar as direções da tendência, esta estratégia pertence a uma estratégia típica de tendência.
Soluções:
Esta estratégia pertence a uma estratégia típica de tendência que acompanha continuamente as tendências de preços construindo bandas de média móvel suave e evitando sinais inválidos com filtros de assistência. Sua vantagem reside na construção de bandas de preços suaves para melhor capturar voltas nas tendências de preços.
/*backtest start: 2023-12-03 00:00:00 end: 2023-12-10 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ //@version=4 // Copyright (c) 2007-present Jurik Research and Consulting. All rights reserved. // Copyright (c) 2018-present, Alex Orekhov (everget) // Thanks to everget for code for more advanced moving averages // Smooth Moving Average Ribbon [STRATEGY] @PuppyTherapy script may be freely distributed under the MIT license. strategy( title="Smooth Moving Average Ribbon [STRATEGY] @PuppyTherapy", overlay=true ) // ---- CONSTANTS ---- lsmaOffset = 1 almaOffset = 0.85 almaSigma = 6 phase = 2 power = 2 // ---- GLOBAL FUNCTIONS ---- kama(src, len)=> xvnoise = abs(src - src[1]) nfastend = 0.666 nslowend = 0.0645 nsignal = abs(src - src[len]) nnoise = sum(xvnoise, len) nefratio = iff(nnoise != 0, nsignal / nnoise, 0) nsmooth = pow(nefratio * (nfastend - nslowend) + nslowend, 2) nAMA = 0.0 nAMA := nz(nAMA[1]) + nsmooth * (src - nz(nAMA[1])) t3(src, len)=> xe1_1 = ema(src, len) xe2_1 = ema(xe1_1, len) xe3_1 = ema(xe2_1, len) xe4_1 = ema(xe3_1, len) xe5_1 = ema(xe4_1, len) xe6_1 = ema(xe5_1, len) b_1 = 0.7 c1_1 = -b_1*b_1*b_1 c2_1 = 3*b_1*b_1+3*b_1*b_1*b_1 c3_1 = -6*b_1*b_1-3*b_1-3*b_1*b_1*b_1 c4_1 = 1+3*b_1+b_1*b_1*b_1+3*b_1*b_1 nT3Average_1 = c1_1 * xe6_1 + c2_1 * xe5_1 + c3_1 * xe4_1 + c4_1 * xe3_1 // The general form of the weights of the (2m + 1)-term Henderson Weighted Moving Average getWeight(m, j) => numerator = 315 * (pow(m + 1, 2) - pow(j, 2)) * (pow(m + 2, 2) - pow(j, 2)) * (pow(m + 3, 2) - pow(j, 2)) * (3 * pow(m + 2, 2) - 11 * pow(j, 2) - 16) denominator = 8 * (m + 2) * (pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 9) * (4 * pow(m + 2, 2) - 25) denominator != 0 ? numerator / denominator : 0 hwma(src, termsNumber) => sum = 0.0 weightSum = 0.0 termMult = (termsNumber - 1) / 2 for i = 0 to termsNumber - 1 weight = getWeight(termMult, i - termMult) sum := sum + nz(src[i]) * weight weightSum := weightSum + weight sum / weightSum get_jurik(length, phase, power, src)=> phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5 beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2) alpha = pow(beta, power) jma = 0.0 e0 = 0.0 e0 := (1 - alpha) * src + alpha * nz(e0[1]) e1 = 0.0 e1 := (src - e0) * (1 - beta) + beta * nz(e1[1]) e2 = 0.0 e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1]) jma := e2 + nz(jma[1]) variant(src, type, len ) => v1 = sma(src, len) // Simple v2 = ema(src, len) // Exponential v3 = 2 * v2 - ema(v2, len) // Double Exponential v4 = 3 * (v2 - ema(v2, len)) + ema(ema(v2, len), len) // Triple Exponential v5 = wma(src, len) // Weighted v6 = vwma(src, len) // Volume Weighted v7 = na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len // Smoothed v8 = wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len))) // Hull v9 = linreg(src, len, lsmaOffset) // Least Squares v10 = alma(src, len, almaOffset, almaSigma) // Arnaud Legoux v11 = kama(src, len) // KAMA ema1 = ema(src, len) ema2 = ema(ema1, len) v13 = t3(src, len) // T3 v14 = ema1+(ema1-ema2) // Zero Lag Exponential v15 = hwma(src, len) // Henderson Moving average thanks to @everget ahma = 0.0 ahma := nz(ahma[1]) + (src - (nz(ahma[1]) + nz(ahma[len])) / 2) / len //Ahrens Moving Average v16 = ahma v17 = get_jurik( len, phase, power, src) type=="EMA"?v2 : type=="DEMA"?v3 : type=="TEMA"?v4 : type=="WMA"?v5 : type=="VWMA"?v6 : type=="SMMA"?v7 : type=="Hull"?v8 : type=="LSMA"?v9 : type=="ALMA"?v10 : type=="KAMA"?v11 : type=="T3"?v13 : type=="ZEMA"?v14 : type=="HWMA"?v15 : type=="AHMA"?v16 : type=="JURIK"?v17 : v1 smoothMA(o, h, l, c, maLoop, type, len) => ma_o = 0.0 ma_h = 0.0 ma_l = 0.0 ma_c = 0.0 if maLoop == 1 ma_o := variant(o, type, len) ma_h := variant(h, type, len) ma_l := variant(l, type, len) ma_c := variant(c, type, len) if maLoop == 2 ma_o := variant(variant(o ,type, len),type, len) ma_h := variant(variant(h ,type, len),type, len) ma_l := variant(variant(l ,type, len),type, len) ma_c := variant(variant(c ,type, len),type, len) if maLoop == 3 ma_o := variant(variant(variant(o ,type, len),type, len),type, len) ma_h := variant(variant(variant(h ,type, len),type, len),type, len) ma_l := variant(variant(variant(l ,type, len),type, len),type, len) ma_c := variant(variant(variant(c ,type, len),type, len),type, len) if maLoop == 4 ma_o := variant(variant(variant(variant(o ,type, len),type, len),type, len),type, len) ma_h := variant(variant(variant(variant(h ,type, len),type, len),type, len),type, len) ma_l := variant(variant(variant(variant(l ,type, len),type, len),type, len),type, len) ma_c := variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len) if maLoop == 5 ma_o := variant(variant(variant(variant(variant(o ,type, len),type, len),type, len),type, len),type, len) ma_h := variant(variant(variant(variant(variant(h ,type, len),type, len),type, len),type, len),type, len) ma_l := variant(variant(variant(variant(variant(l ,type, len),type, len),type, len),type, len),type, len) ma_c := variant(variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len),type, len) [ma_o, ma_h, ma_l, ma_c] smoothHA( o, h, l, c ) => hao = 0.0 hac = ( o + h + l + c ) / 4 hao := na(hao[1])?(o + c / 2 ):(hao[1] + hac[1])/2 hah = max(h, max(hao, hac)) hal = min(l, min(hao, hac)) [hao, hah, hal, hac] // ---- Main Ribbon ---- haSmooth = input(true, title=" Use HA as source ? " ) length = input(11, title=" MA1 Length", minval=1, maxval=1000) maLoop = input(3, title=" Nr. of MA1 Smoothings ", minval=1, maxval=5) type = input("EMA", title="MA Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"]) haSmooth2 = input(true, title=" Use HA as source ? " ) // ---- Trend ---- ma_use = input(true, title=" ----- Use MA Filter ( For Lower Timeframe Swings / Scalps ) ? ----- " ) ma_source = input(defval = close, title = "MA - Source", type = input.source) ma_length = input(100,title="MA - Length", minval=1 ) ma_type = input("SMA", title="MA - Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"]) ma_useHA = input(defval = false, title = "Use HA Candles as Source ?") ma_rsl = input(true, title = "Use Rising / Falling Logic ?" ) // ---- BODY SCRIPT ---- [ ha_open, ha_high, ha_low, ha_close ] = smoothHA(open, high, low, close) _open_ma = haSmooth ? ha_open : open _high_ma = haSmooth ? ha_high : high _low_ma = haSmooth ? ha_low : low _close_ma = haSmooth ? ha_close : close [ _open, _high, _low, _close ] = smoothMA( _open_ma, _high_ma, _low_ma, _close_ma, maLoop, type, length) [ ha_open2, ha_high2, ha_low2, ha_close2 ] = smoothHA(_open, _high, _low, _close) _open_ma2 = haSmooth2 ? ha_open2 : _open _high_ma2 = haSmooth2 ? ha_high2 : _high _low_ma2 = haSmooth2 ? ha_low2 : _low _close_ma2 = haSmooth2 ? ha_close2 : _close ribbonColor = _close_ma2 > _open_ma2 ? color.lime : color.red p_open = plot(_open_ma2, title="Ribbon - Open", color=ribbonColor, transp=70) p_close = plot(_close_ma2, title="Ribbon - Close", color=ribbonColor, transp=70) fill(p_open, p_close, color = ribbonColor, transp = 40 ) // ----- FILTER ma = 0.0 if ma_use == true ma := variant( ma_useHA ? ha_close : ma_source, ma_type, ma_length ) maFilterShort = ma_use ? ma_rsl ? falling(ma,1) : ma_useHA ? ha_close : close < ma : true maFilterLong = ma_use ? ma_rsl ? rising(ma,1) : ma_useHA ? ha_close : close > ma : true colorTrend = rising(ma,1) ? color.green : color.red plot( ma_use ? ma : na, title="MA Trend", color=colorTrend, transp=80, transp=70, linewidth = 5) long = crossover(_close_ma2, _open_ma2 ) and maFilterLong short = crossunder(_close_ma2, _open_ma2 ) and maFilterShort closeAll = cross(_close_ma2, _open_ma2 ) plotshape( short , title="Short", color=color.red, transp=80, style=shape.triangledown, location=location.abovebar, size=size.small) plotshape( long , title="Long", color=color.lime, transp=80, style=shape.triangleup, location=location.belowbar, size=size.small) //* Backtesting Period Selector | Component *// //* Source: https://www.tradingview.com/script/eCC1cvxQ-Backtesting-Period-Selector-Component *// testStartYear = input(2018, "Backtest Start Year",minval=1980) testStartMonth = input(1, "Backtest Start Month",minval=1,maxval=12) testStartDay = input(1, "Backtest Start Day",minval=1,maxval=31) testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0) testStopYear = 9999 //input(9999, "Backtest Stop Year",minval=1980) testStopMonth = 12 // input(12, "Backtest Stop Month",minval=1,maxval=12) testStopDay = 31 //input(31, "Backtest Stop Day",minval=1,maxval=31) testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0) testPeriod() => time >= testPeriodStart and time <= testPeriodStop ? true : false if testPeriod() and long strategy.entry( "long", strategy.long ) if testPeriod() and short strategy.entry( "short", strategy.short ) if closeAll strategy.close_all( when = closeAll )