A estratégia de compra e venda de Bullish Engulfing é uma estratégia quantitativa de negociação baseada em padrões de velas. Captura oportunidades para lucrar com reversões de preços identificando o padrão de velas
Esta estratégia identifica reversões de preços com base no padrão de velas
Quando uma ação está em uma tendência de queda, se um candelabro com um corpo real pequeno é seguido por um candelabro cujo corpo real englobe completamente o corpo real anterior, e o preço de fechamento é maior do que o preço alto anterior, isso forma um padrão de Engulfing de alta, sinalizando uma reversão iminente da tendência, onde o preço começará a subir.
Esta estratégia abrirá uma posição longa quando for identificado um padrão de engolfamento de alta, com um objetivo de lucro de 1% e um stop loss de 1%, para bloquear os lucros.
As vantagens desta estratégia são as seguintes:
Há alguns riscos nesta estratégia:
Para combater estes riscos, podemos:
Esta estratégia pode também ser reforçada por:
A estratégia de compra e venda Bullish Engulfing é uma estratégia de negociação quantitativa madura baseada em análise técnica, com as vantagens de sinais comerciais simples e claros que são fáceis de implementar. Com parâmetros otimizados e boas medidas de controle de risco, pode produzir lucros constantes e é altamente recomendável.
/*backtest start: 2022-12-20 00:00:00 end: 2023-12-26 00:00:00 period: 1d basePeriod: 1h exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // © thequantscience // ██████╗ ██╗ ██╗██╗ ██╗ ██╗███████╗██╗ ██╗ ███████╗███╗ ██╗ ██████╗ ██╗ ██╗██╗ ███████╗██╗███╗ ██╗ ██████╗ // ██╔══██╗██║ ██║██║ ██║ ██║██╔════╝██║ ██║ ██╔════╝████╗ ██║██╔════╝ ██║ ██║██║ ██╔════╝██║████╗ ██║██╔════╝ // ██████╔╝██║ ██║██║ ██║ ██║███████╗███████║ █████╗ ██╔██╗ ██║██║ ███╗██║ ██║██║ █████╗ ██║██╔██╗ ██║██║ ███╗ // ██╔══██╗██║ ██║██║ ██║ ██║╚════██║██╔══██║ ██╔══╝ ██║╚██╗██║██║ ██║██║ ██║██║ ██╔══╝ ██║██║╚██╗██║██║ ██║ // ██████╔╝╚██████╔╝███████╗███████╗██║███████║██║ ██║ ███████╗██║ ╚████║╚██████╔╝╚██████╔╝███████╗██║ ██║██║ ╚████║╚██████╔╝ // ╚═════╝ ╚═════╝ ╚══════╝╚══════╝╚═╝╚══════╝╚═╝ ╚═╝ ╚══════╝╚═╝ ╚═══╝ ╚═════╝ ╚═════╝ ╚══════╝╚═╝ ╚═╝╚═╝ ╚═══╝ ╚═════╝ //@version=5 strategy( "Buy&Sell Bullish Engulfing - The Quant Science", overlay = true, default_qty_type = strategy.percent_of_equity, default_qty_value = 100, pyramiding = 1, currency = currency.EUR, initial_capital = 10000, commission_type = strategy.commission.percent, commission_value = 0.07, process_orders_on_close = true, close_entries_rule = "ANY" ) startDate = input.int(title="D: ", defval=1, minval=1, maxval=31, inline = 'Start', group = "START DATE BACKTESTING", tooltip = "D is Day, M is Month, Y is Year.") startMonth = input.int(title="M: ", defval=1, minval=1, maxval=12, inline = 'Start', group = "START DATE BACKTESTING", tooltip = "D is Day, M is Month, Y is Year.") startYear = input.int(title="Y: ", defval=2022, minval=1800, maxval=2100, inline = 'Start', group = "START DATE BACKTESTING", tooltip = "D is Day, M is Month, Y is Year.") endDate = input.int(title="D: ", defval=31, minval=1, maxval=31, inline = 'End', group = "END DATE BACKTESTING", tooltip = "D is Day, M is Month, Y is Year.") endMonth = input.int(title="M: ", defval=12, minval=1, maxval=12, inline = 'End', group = "END DATE BACKTESTING", tooltip = "D is Day, M is Month, Y is Year.") endYear = input.int(title="Y: ", defval=2023, minval=1800, maxval=2100, inline = 'End', group = "END DATE BACKTESTING", tooltip = "D is Day, M is Month, Y is Year.") inDateRange = (time >= timestamp(syminfo.timezone, startYear, startMonth, startDate, 0, 0)) and (time < timestamp(syminfo.timezone, endYear, endMonth, endDate, 0, 0)) PROFIT = input.float(defval = 1, minval = 0, title = "Target profit (%): ", step = 0.10, group = "TAKE PROFIT-STOP LOSS") STOPLOSS = input.float(defval = 1, minval = 0, title = "Stop Loss (%): ", step = 0.10, group = "TAKE PROFIT-STOP LOSS") var float equity_trades = 0 strategy.initial_capital = 50000 equity_trades := strategy.initial_capital var float equity = 0 var float qty_order = 0 t_ordersize = "Percentage size of each new order. With 'Reinvestment Profit' activate, the size will be calculate on the equity, with 'Reinvestment Profit' deactivate the size will be calculate on the initial capital." orders_size = input.float(defval = 2, title = "Orders size (%): ", minval = 0.10, step = 0.10, maxval = 100, group = "RISK MANAGEMENT", tooltip = t_ordersize) qty_order := ((equity_trades * orders_size) / 100 ) / close C_DownTrend = true C_UpTrend = true var trendRule1 = "SMA50" var trendRule2 = "SMA50, SMA200" var trendRule = input.string(trendRule1, "Detect Trend Based On", options=[trendRule1, trendRule2, "No detection"], group = "BULLISH ENGULFING") if trendRule == trendRule1 priceAvg = ta.sma(close, 50) C_DownTrend := close < priceAvg C_UpTrend := close > priceAvg if trendRule == trendRule2 sma200 = ta.sma(close, 200) sma50 = ta.sma(close, 50) C_DownTrend := close < sma50 and sma50 < sma200 C_UpTrend := close > sma50 and sma50 > sma200 C_Len = 14 C_ShadowPercent = 5.0 C_ShadowEqualsPercent = 100.0 C_DojiBodyPercent = 5.0 C_Factor = 2.0 C_BodyHi = math.max(close, open) C_BodyLo = math.min(close, open) C_Body = C_BodyHi - C_BodyLo C_BodyAvg = ta.ema(C_Body, C_Len) C_SmallBody = C_Body < C_BodyAvg C_LongBody = C_Body > C_BodyAvg C_UpShadow = high - C_BodyHi C_DnShadow = C_BodyLo - low C_HasUpShadow = C_UpShadow > C_ShadowPercent / 100 * C_Body C_HasDnShadow = C_DnShadow > C_ShadowPercent / 100 * C_Body C_WhiteBody = open < close C_BlackBody = open > close C_Range = high-low C_IsInsideBar = C_BodyHi[1] > C_BodyHi and C_BodyLo[1] < C_BodyLo C_BodyMiddle = C_Body / 2 + C_BodyLo C_ShadowEquals = C_UpShadow == C_DnShadow or (math.abs(C_UpShadow - C_DnShadow) / C_DnShadow * 100) < C_ShadowEqualsPercent and (math.abs(C_DnShadow - C_UpShadow) / C_UpShadow * 100) < C_ShadowEqualsPercent C_IsDojiBody = C_Range > 0 and C_Body <= C_Range * C_DojiBodyPercent / 100 C_Doji = C_IsDojiBody and C_ShadowEquals patternLabelPosLow = low - (ta.atr(30) * 0.6) patternLabelPosHigh = high + (ta.atr(30) * 0.6) label_color_bullish = input.color(color.rgb(43, 255, 0), title = "Label Color Bullish", group = "BULLISH ENGULFING") C_EngulfingBullishNumberOfCandles = 2 C_EngulfingBullish = C_DownTrend and C_WhiteBody and C_LongBody and C_BlackBody[1] and C_SmallBody[1] and close >= open[1] and open <= close[1] and ( close > open[1] or open < close[1] ) if C_EngulfingBullish var ttBullishEngulfing = "Engulfing\nAt the end of a given downward trend, there will most likely be a reversal pattern. To distinguish the first day, this candlestick pattern uses a small body, followed by a day where the candle body fully overtakes the body from the day before, and closes in the trend’s opposite direction. Although similar to the outside reversal chart pattern, it is not essential for this pattern to completely overtake the range (high to low), rather only the open and the close." label.new(bar_index, patternLabelPosLow, text="BE", style=label.style_label_up, color = label_color_bullish, textcolor=color.white, tooltip = ttBullishEngulfing) bgcolor(ta.highest(C_EngulfingBullish?1:0, C_EngulfingBullishNumberOfCandles)!=0 ? color.new(#21f321, 90) : na, offset=-(C_EngulfingBullishNumberOfCandles-1)) var float c = 0 var float o = 0 var float c_exit = 0 var float c_stopl = 0 if C_EngulfingBullish and strategy.opentrades==0 and inDateRange c := strategy.equity o := close c_exit := c + (c * PROFIT / 100) c_stopl := c - (c * STOPLOSS / 100) strategy.entry(id = "LONG", direction = strategy.long, qty = qty_order, limit = o) if ta.crossover(strategy.equity, c_exit) strategy.exit(id = "CLOSE-LONG", from_entry = "LONG", limit = close) if ta.crossunder(strategy.equity, c_stopl) strategy.exit(id = "CLOSE-LONG", from_entry = "LONG", limit = close)