Динамическая средняя стоимость составная стратегия DCA динамически корректирует количество каждой открывающейся позиции. В начале тренда сначала открывается небольшие позиции для построения позиции. По мере увеличения глубины консолидации она постепенно увеличивает размер позиции. Стратегия использует экспоненциальные функции для расчета уровня цены стоп-лосса и вновь открывает новые партии при запуске, что может привести к тому, что стоимость удержания позиций будет продолжать уменьшаться экспоненциально. По мере увеличения глубины стоимость позиций может постепенно снижаться.
Эта стратегия использует простую комбинацию сигналов перепродажи RSI и сроков движущихся средних для определения возможностей входа. Первый ордер на вход подается, когда RSI опускается ниже уровня перепродажи и цена закрывается ниже движущейся средней. После первого входа экспоненциальная функция вычисляет процент падения цены на следующие уровни. Каждый раз, когда она запускает ордер DCA, размер позиции пересчитывается, чтобы сохранить равную сумму за вход. По мере динамического изменения размера позиции и стоимости, он создает эффект рычага.
По мере увеличения количества DCA средняя стоимость хранения продолжает снижаться. Достаточно лишь небольшого отскока для получения прибыли от каждой позиции. После непрерывных вводов, линия остановки потери выведена выше средней цены хранения. Как только цена выходит выше средней цены и линии остановки потери, все позиции закрываются.
Самое большое преимущество заключается в том, что по мере того, как стоимость владения продолжает снижаться, даже во время консолидации, стоимость все еще может снижаться постепенно.
Самый большой риск - это ограниченный размер позиции в начале. Во время непрерывного снижения может возникнуть риск остановки потери. Поэтому процент остановки потери должен быть установлен разумно на основе личного аппетита к риску.
Кроме того, установка уровня стоп-лосса имеет две крайности. Если слишком свободно, недостаточно ретраксера можно захватить. Но если слишком тесно, вероятность остановки во время промежуточных коррекций увеличивается. Поэтому выбор правильных уровней стоп-лосса в соответствии с различными рыночными условиями и предпочтениями риска имеет решающее значение.
Если существует слишком много уровней DCA, когда цена значительно повышается, чрезвычайно высокая стоимость хранения может предотвратить эффективную стоп-лосс.
Оптимизировать сигналы ввода времени, тестируя параметры и другие комбинации индикаторов для сигналов более высокой скорости победы.
Оптимизируйте механизмы остановки потери, тестируя L задержку задержки потери или задержку задержки задержки задержки, чтобы получить лучшие результаты. Кроме того, уровни могут регулироваться динамически на основе процента распределения позиции.
Оптимизировать способы получения прибыли. Различные типы отслеживания прибыли могут быть изучены для лучших возможностей выхода и более высокой общей доходности.
Добавить механизм противоударного винта. Иногда сигнал DCA может быть активирован снова вскоре после остановки потери.
Эта стратегия использует RSI для определения входов, экспоненциальный динамический механизм стоп-лосса DCA для динамической корректировки размеров позиций и средних затрат, чтобы получить ценовое преимущество во время консолидации. Основные области оптимизации сосредоточены на сигналах входа / выхода, стоп-лосса и прибыли. Основная концепция экспоненциального DCA реализуется для непрерывного снижения стоимости удержания, обеспечивая таким образом больше места во время консолидации и достижения умноженной доходности при появлении тренда.
/*backtest start: 2023-12-04 00:00:00 end: 2024-01-03 00:00:00 period: 1h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/// // © A3Sh //@version=5 // Study of a Simple RSI based, PA (priceaveraging) and DCA strategy that opens a new position everytime it hits a specified price level below the first entry. // The first entry is opened when the specified rsi and moving average conditions are met. // The following DCA levels are calculated exponentially and set, starting with a specified % of price drop. // The disctance between the dca levels can be changed with the exponential scale. // Each position closes individually when it reaches a specified take profit. // The position can re-open again when it hits the price level again. // Each time a position is closed and reopened, the average price drops a little. // The position stays open until the first entry closes or when the price reaches the Stop level. // When the price reaches the Stop level, all positions will close at once. // The RSI and MA code for opening the entry is adapted from the Optimized RSI Buy the Dips strategy, by Coinrule. // This code is used for study purposes, but any other low/ dip finding indicator can be used. // https://www.tradingview.com/script/Pm1WAtyI-Optimized-RSI-Strategy-Buy-The-Dips-by-Coinrule/ // Dynamic DCA layers are inspired by the Backtesting 3commas DCA Bot v2, by rouxam // This logic gives more flexibility because you can dyanically change the amount of dca entries. // https://www.tradingview.com/script/8d6Auyst-Backtesting-3commas-DCA-Bot-v2/ // The use of for loops to (re)open and close different entries separately is based on the Simple_Pyramiding strategy. // https://www.tradingview.com/script/t6cNLqDN-Simple-Pyramiding/ strategy('Simple_RSI+PA+DCA', overlay=true, pyramiding=20, initial_capital=500, calc_on_order_fills=true, default_qty_type=strategy.percent_of_equity, commission_type=strategy.commission.percent, commission_value=0.075, close_entries_rule='FIFO') // Backtest Window // start_time = input(defval=timestamp("01 April 2021 20:00"), group = "Backtest Window", title="Start Time") end_time = input(defval=timestamp("01 Aug 2030 20:00"), group = "Backtest Window", title="End Time") window() => true // Inputs // takeProfit = input.float (3, group = 'Risk', title = 'Take Profit %', step=0.1) takeProfitAll = input.float (6, group = "Risk", title = 'Close All %', step=0.1) posCount = input.int (8, group = 'DCA Settings', title = 'Max Amount of Entries') increment = input.float (2, group = 'DCA Settings', title = 'Price Drop % to open First DCA Order', step=0.5)/100 exponent_scale = input.float (1.4, group = 'DCA Settings', title = 'Exponential Scale DCA levels', step=0.1, minval=1.1) bar_lookback = input.int (4999, group = 'DCA Settings', title = 'Lines Bar Lookback', maxval = 4999) plotMA = input.bool (false, group = 'Moving Average', title = 'Plot Moving Average') moving_average = input.int (100, group = 'Moving Average', title = 'MA Length' ) rsiLengthInput = input.int (14, group = 'RSI Settings', title = "RSI Length", minval=1) rsiSourceInput = input.source (close, group = 'RSI Settings', title = 'Source') overSold = input.int (29, group = 'RSI Settings', title = 'Oversold, Trigger to Enter First Position') // variables // var open_position = true // true when there are open positions var entry_price = 0.0 // the entry price of the first entry var dca_price = 0.0 // the price of the different dca layers var int count = 0 // bar counter since first open position var int max_bar = 0 // max bar buffer variable for DCA lines, stop lines, average price var line dca_line = na // lines variable for creating dca lines // arrays // linesArray = array.new_float(posCount,na) // array to store different dca price levels for creating the dca lines // Create max bar buffer for DCA lines, Stop and average price lines // max_bar := count >= bar_lookback ? bar_lookback : count // Order size based on first entry and amount of DCA layers q = (strategy.equity / posCount + 1) / open // Calculate Moving Averages movingaverage_signal = ta.sma(close ,moving_average) plot (plotMA ? movingaverage_signal : na, color = color.new(#f5ff35, 0)) // RSI calculations // up = ta.rma(math.max(ta.change(rsiSourceInput), 0), rsiLengthInput) down = ta.rma(-math.min(ta.change(rsiSourceInput), 0), rsiLengthInput) rsi = down == 0 ? 100 : up == 0 ? 0 : 100 - (100 / (1 + up / down)) // Buy Signal (co) co = ta.crossover(rsi, overSold) and close < movingaverage_signal // Create a white line for average price, since the last opened position // // average_price = line.new(x1 = bar_index - max_bar, y1 = strategy.position_avg_price, x2 = bar_index, y2 = strategy.position_avg_price, color = color.white) // Stop // // Create a red Stop level line based on a specified % above the average price // stop_level = strategy.position_avg_price + (strategy.position_avg_price / 100 * takeProfitAll) // stop_line = line.new(x1 = bar_index - max_bar, y1 = stop_level, x2 = bar_index, y2 = stop_level, color = color.red) // Take profit definition per open position // take_profit_price = close * takeProfit / 100 / syminfo.mintick // Make sure the Stop level and average price level don't excied the bar buffer to avoid errors // // if count <= bar_lookback // line.set_x1(stop_line, strategy.opentrades.entry_bar_index(strategy.opentrades - 1)) // line.set_x1(average_price, strategy.opentrades.entry_bar_index(strategy.opentrades - 1)) // Exponential DCA Layer Calculation fucntion --> First try, needs more experimentation // dca_price_level(index,entry_price) => entry_price * (1 - (increment * math.pow(exponent_scale, index))) // Set Entries // // Open the first entry and set the entry price // if co and strategy.position_size == 0 and window() open_position := true entry_price := close strategy.entry(id = 'FE1', direction = strategy.long, qty = q) // first_entry_line = line.new(x1 = bar_index - max_bar, y1 = entry_price, x2 = bar_index, y2 = entry_price, color = color.blue) // Start bar counting since the position is open // if open_position == true count := count + 1 // Set the DCA entries // // Prices below 1 are not set to avoid negative prices // if strategy.position_size > 0 and window() for i = 0 to strategy.opentrades if strategy.opentrades == i and i < posCount dca_price := dca_price_level(i,entry_price) > 1 ? dca_price_level(i,entry_price) : na entry_id = 'DCA' + str.tostring(i + 1) strategy.entry(id = entry_id, direction = strategy.long, limit = dca_price, qty = q) // Store the values of the different dca price levels in an array and create the dca lines // // Prices below 1 are not stored// if open_position==true and window() for i = 1 to posCount -1 array.push(linesArray, dca_price_level(i,entry_price) > 1 ? dca_price_level(i,entry_price) : na) // for i = 1 to array.size(linesArray) - 1 // dca_line := line.new(x1 = bar_index - max_bar, y1 = array.get(linesArray, i), x2 = bar_index, y2 = array.get(linesArray, i),color = color.blue) // Create thick line to show the last Entry price // // last_entry_price = line.new(x1 = bar_index[5], y1 = strategy.opentrades.entry_price(strategy.opentrades - 1), x2 = bar_index, y2 = strategy.opentrades.entry_price(strategy.opentrades - 1),color = color.rgb(255, 0, 204), width = 5) // Exit the first entry when the take profit triggered // if strategy.opentrades > 0 and window() strategy.exit(id = 'Exit FE', from_entry = 'FE1', profit = take_profit_price) // Exit DCA entries when take profit is triggered // if strategy.opentrades > 0 and window() for i = 0 to strategy.opentrades exit_from = 'DCA' + str.tostring(i + 1) exit_id = 'Exit_' + str.tostring(i + 1) strategy.exit(id = exit_id, from_entry = exit_from, profit = take_profit_price) // Close all positions at once when Stop is crossed // if strategy.opentrades > 0 and ta.crossover(close,stop_level) and window() strategy.close_all() // Make sure nothing is open after alle positions are closed and set the condiftion back to be open for new entries // if strategy.position_size[1] > 0 and strategy.position_size == 0 strategy.cancel_all() strategy.close_all() // line.delete(average_price) // line.delete(stop_line) // line.delete(dca_line) open_position := false // All position are closed, so back to false count := 0 // Reset bar counter