یہ حکمت عملی تیز رفتار اور سست رجحان اشارے کا انتخاب کرکے تجارتی سگنل تیار کرتی ہے اور جب تیز رفتار رجحان سست رجحان سے تجاوز کرتا ہے تو طویل ہوجاتا ہے ، اور جب تیز رفتار رجحان سست رجحان سے نیچے ہوتا ہے تو مختصر ہوجاتا ہے۔ اس حکمت عملی میں 20 سے زیادہ مختلف رجحان حساب کتاب شامل ہیں۔
اسٹریٹیجی کا مرکز تیز رفتار اور سست رجحان کے اشارے کا انتخاب اور امتزاج ہے:
FastTrend = User selected fast trend indicator
SlowTrend = User selected slow trend indicator
تیز رفتار رجحان میں ایس ایم اے ، ای ایم اے ، کاما اور 20+ رجحان الگورتھم شامل ہیں۔ سست رجحان کو بھی آزادانہ طور پر منتخب کیا جاسکتا ہے۔
تجارتی سگنل تیز رفتار اور سست رجحانات کے درمیان تعلقات کا فیصلہ کرکے تیار کیے جاتے ہیں:
if FastTrend > SlowTrend:
Go long
if FastTrend < SlowTrend:
Close position
لانگ سگنل اس وقت ٹرگر ہوتا ہے جب تیز رفتار رجحان سست رجحان کو عبور کرتا ہے۔ شارٹ سگنل اس وقت ٹرگر ہوتا ہے جب تیز رفتار رجحان سست رجحان سے نیچے عبور کرتا ہے۔
اسٹریٹیجی کو مندرجہ ذیل پہلوؤں میں بہتر بنایا جاسکتا ہے:
تیز رفتار / سست رجحانات اور پیرامیٹرز کو بہتر مجموعہ تلاش کرنے کے لئے ایڈجسٹ کریں.
مارکیٹ میں ہلچل کے دوران جھوٹے سگنل سے بچنے کے لیے حجم جیسے فلٹرز شامل کریں۔
اسٹاپ نقصان کی حکمت عملی شامل کریں جیسے ٹریلنگ اسٹاپ نقصان کو واحد تجارت کے نقصان کو کنٹرول کرنے کے لئے.
استحکام کو بہتر بنانے کے لئے MACD، KDJ جیسے دیگر اشارے کے ساتھ مل کر.
انٹری ٹائمنگ کو بہتر بنائیں، صرف ٹرینڈ کراس اوور پر انحصار نہ کریں۔
ملٹی ٹرینڈ کراس اوور حکمت عملی تیز رفتار اور سست رجحانات کو جوڑ کر ٹائم فریموں میں رجحان کی تبدیلیوں کی نشاندہی کرتی ہے۔ لیکن یہ مارکیٹ میں اتار چڑھاؤ کے لئے حساس ہے اور صرف واضح رجحانات والی منڈیوں میں اچھی طرح کام کرتی ہے۔ حکمت عملی کے استحکام اور منافع کو بہتر بنانے کے لئے ہمیں پیرامیٹر کی اصلاح اور رسک مینجمنٹ جیسے طریقوں کی ضرورت ہے۔
[/trans]
/*backtest start: 2023-08-21 00:00:00 end: 2023-09-20 00:00:00 period: 3h basePeriod: 15m exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}] */ // This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/ // @version=5 // Author = TradeAutomation strategy(title="Multi Trend Cross Strategy Template", shorttitle="Multi Trend Cross Strategy", process_orders_on_close=true, overlay=true, commission_type=strategy.commission.cash_per_contract, commission_value=0.0035, initial_capital = 1000000, default_qty_type=strategy.percent_of_equity, default_qty_value=100) // Backtest Date Range Inputs // StartTime = input(defval=timestamp('01 Jan 2000 05:00 +0000'), group="Date Range", title='Start Time') EndTime = input(defval=timestamp('01 Jan 2099 00:00 +0000'), group="Date Range", title='End Time') InDateRange = true // Trend Selector // TrendSelectorInput = input.string(title="Fast Trend Selector", defval="EMA", group="Core Settings", options=["ALMA", "DEMA", "DSMA", "EMA", "HMA", "JMA", "KAMA", "Linear Regression (LSMA)", "RMA", "SMA", "SMMA", "Price Source", "TEMA", "TMA", "VAMA", "VIDYA", "VMA", "VWMA", "WMA", "WWMA", "ZLEMA"], tooltip="Select your fast trend") TrendSelectorInput2 = input.string(title="Slow Trend Selector", defval="EMA", group="Core Settings", options=["ALMA", "DEMA", "DSMA", "EMA", "HMA", "JMA", "KAMA", "Linear Regression (LSMA)", "RMA", "SMA", "SMMA", "Price Source", "TEMA", "TMA", "VAMA", "VIDYA", "VMA", "VWMA", "WMA", "WWMA", "ZLEMA"], tooltip="Select your slow trend") src = input.source(close, "Price Source", group="Core Settings", tooltip="This is the price source being used for the trends to calculate based on") length = input.int(10, "Fast Trend Length", group="Core Settings", step=5, tooltip="A long is entered when the selected fast trend crosses over the selected slow trend") length2 = input.int(200, "Slow Trend Length", group="Core Settings", step=5, tooltip="A long is entered when the selected fast trend crosses over the selected slow trend") LineWidth = input.int(1, "Line Width", group="Core Settings", tooltip="This is the width of the line plotted that represents the selected trend") // Individual Moving Average / Regression Setting // AlmaOffset = input.float(0.85, "ALMA Offset", group="Individual Trend Settings", tooltip="This only applies when ALMA is selected") AlmaSigma = input.float(6, "ALMA Sigma", group="Individual Trend Settings", tooltip="This only applies when ALMA is selected") ATRFactor = input.float(3, "ATR Multiplier For SuperTrend", group="Individual Trend Settings", tooltip="This only applies when SuperTrend is selected") ATRLength = input.int(12, "ATR Length For SuperTrend", group="Individual Trend Settings", tooltip="This only applies when SuperTrend is selected") ssfLength = input.int(20, "DSMA Super Smoother Filter Length", minval=1, tooltip="This only applies when EDSMA is selected", group="Individual Trend Settings") ssfPoles = input.int(2, "DSMA Super Smoother Filter Poles", options=[2, 3], tooltip="This only applies when EDSMA is selected", group="Individual Trend Settings") JMApower = input.int(2, "JMA Power Parameter", group="Individual Trend Settings", tooltip="This only applies when JMA is selected") phase = input.int(-45, title="JMA Phase Parameter", step=10, minval=-110, maxval=110, group="Individual Trend Settings", tooltip="This only applies when JMA is selected") KamaAlpha = input.float(3, "KAMA's Alpha", minval=1,step=0.5, group="Individual Trend Settings", tooltip="This only applies when KAMA is selected") LinRegOffset = input.int(0, "Linear Regression Offset", group="Individual Trend Settings", tooltip="This only applies when Linear Regression is selected") VAMALookback =input.int(12, "VAMA Volatility lookback", group="Individual Trend Settings", tooltip="This only applies when VAMA is selected") // Trend Indicators With Library Functions // ALMA = ta.alma(src, length, AlmaOffset, AlmaSigma) EMA = ta.ema(src, length) HMA = ta.hma(src, length) LinReg = ta.linreg(src, length, LinRegOffset) RMA = ta.rma(src, length) SMA = ta.sma(src, length) VWMA = ta.vwma(src, length) WMA = ta.wma(src, length) ALMA2 = ta.alma(src, length2, AlmaOffset, AlmaSigma) EMA2 = ta.ema(src, length2) HMA2 = ta.hma(src, length2) LinReg2 = ta.linreg(src, length2, LinRegOffset) RMA2 = ta.rma(src, length2) SMA2 = ta.sma(src, length2) VWMA2 = ta.vwma(src, length2) WMA2 = ta.wma(src, length2) // Additional Trend Indicators Built In And/Or Open Sourced // //DEMA de1 = ta.ema(src, length) de2 = ta.ema(de1, length) DEMA = 2 * de1 - de2 de3 = ta.ema(src, length2) de4 = ta.ema(de3, length2) DEMA2 = 2 * de3 - de4 // Ehlers Deviation-Scaled Moving Average - DSMA [Everget] PI = 2 * math.asin(1) get2PoleSSF(src, length) => arg = math.sqrt(2) * PI / length a1 = math.exp(-arg) b1 = 2 * a1 * math.cos(arg) c2 = b1 c3 = -math.pow(a1, 2) c1 = 1 - c2 - c3 var ssf = 0.0 ssf := c1 * src + c2 * nz(ssf[1]) + c3 * nz(ssf[2]) get3PoleSSF(src, length) => arg = PI / length a1 = math.exp(-arg) b1 = 2 * a1 * math.cos(1.738 * arg) c1 = math.pow(a1, 2) coef2 = b1 + c1 coef3 = -(c1 + b1 * c1) coef4 = math.pow(c1, 2) coef1 = 1 - coef2 - coef3 - coef4 var ssf = 0.0 ssf := coef1 * src + coef2 * nz(ssf[1]) + coef3 * nz(ssf[2]) + coef4 * nz(ssf[3]) zeros = src - nz(src[2]) avgZeros = (zeros + zeros[1]) / 2 // Ehlers Super Smoother Filter ssf = ssfPoles == 2 ? get2PoleSSF(avgZeros, ssfLength) : get3PoleSSF(avgZeros, ssfLength) // Rescale filter in terms of Standard Deviations stdev = ta.stdev(ssf, length) scaledFilter = stdev != 0 ? ssf / stdev : 0 alpha1 = 5 * math.abs(scaledFilter) / length EDSMA = 0.0 EDSMA := alpha1 * src + (1 - alpha1) * nz(EDSMA[1]) get2PoleSSF2(src, length2) => arg = math.sqrt(2) * PI / length2 a1 = math.exp(-arg) b1 = 2 * a1 * math.cos(arg) c2 = b1 c3 = -math.pow(a1, 2) c1 = 1 - c2 - c3 var ssf2 = 0.0 ssf2 := c1 * src + c2 * nz(ssf2[1]) + c3 * nz(ssf2[2]) get3PoleSSF2(src, length2) => arg = PI / length2 a1 = math.exp(-arg) b1 = 2 * a1 * math.cos(1.738 * arg) c1 = math.pow(a1, 2) coef2 = b1 + c1 coef3 = -(c1 + b1 * c1) coef4 = math.pow(c1, 2) coef1 = 1 - coef2 - coef3 - coef4 var ssf2 = 0.0 ssf2 := coef1 * src + coef2 * nz(ssf2[1]) + coef3 * nz(ssf2[2]) + coef4 * nz(ssf2[3]) // Ehlers Super Smoother Filter ssf2 = ssfPoles == 2 ? get2PoleSSF2(avgZeros, ssfLength) : get3PoleSSF2(avgZeros, ssfLength) // Rescale filter in terms of Standard Deviations stdev2 = ta.stdev(ssf2, length2) scaledFilter2 = stdev2 != 0 ? ssf2 / stdev2 : 0 alpha12 = 5 * math.abs(scaledFilter2) / length2 EDSMA2 = 0.0 EDSMA2 := alpha12 * src + (1 - alpha12) * nz(EDSMA2[1]) //JMA [Everget] phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5 beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2) alpha = math.pow(beta, JMApower) var JMA = 0.0 var e0 = 0.0 e0 := (1 - alpha) * src + alpha * nz(e0[1]) var e1 = 0.0 e1 := (src - e0) * (1 - beta) + beta * nz(e1[1]) var e2 = 0.0 e2 := (e0 + phaseRatio * e1 - nz(JMA[1])) * math.pow(1 - alpha, 2) + math.pow(alpha, 2) * nz(e2[1]) JMA := e2 + nz(JMA[1]) beta2 = 0.45 * (length2 - 1) / (0.45 * (length2 - 1) + 2) alpha2 = math.pow(beta2, JMApower) var JMA2 = 0.0 var e02 = 0.0 e02 := (1 - alpha2) * src + alpha2 * nz(e02[1]) var e12 = 0.0 e12 := (src - e02) * (1 - beta2) + beta2 * nz(e12[1]) var e22 = 0.0 e22 := (e02 + phaseRatio * e12 - nz(JMA2[1])) * math.pow(1 - alpha2, 2) + math.pow(alpha2, 2) * nz(e22[1]) JMA2 := e22 + nz(JMA2[1]) //KAMA [Everget] var KAMA = 0.0 fastAlpha = 2.0 / (KamaAlpha + 1) slowAlpha = 2.0 / 31 momentum = math.abs(ta.change(src, length)) volatility = math.sum(math.abs(ta.change(src)), length) efficiencyRatio = volatility != 0 ? momentum / volatility : 0 smoothingConstant = math.pow((efficiencyRatio * (fastAlpha - slowAlpha)) + slowAlpha, 2) KAMA := nz(KAMA[1], src) + smoothingConstant * (src - nz(KAMA[1], src)) var KAMA2 = 0.0 momentum2 = math.abs(ta.change(src, length2)) volatility2 = math.sum(math.abs(ta.change(src)), length2) efficiencyRatio2 = volatility2 != 0 ? momentum2 / volatility2 : 0 smoothingConstant2 = math.pow((efficiencyRatio2 * (fastAlpha - slowAlpha)) + slowAlpha, 2) KAMA2 := nz(KAMA2[1], src) + smoothingConstant2 * (src - nz(KAMA2[1], src)) //SMMA var SMMA = 0.0 SMMA := na(SMMA[1]) ? ta.sma(src, length) : (SMMA[1] * (length - 1) + src) / length var SMMA2 = 0.0 SMMA2 := na(SMMA2[1]) ? ta.sma(src, length2) : (SMMA2[1] * (length2 - 1) + src) / length2 //TEMA t1 = ta.ema(src, length) t2 = ta.ema(t1, length) t3 = ta.ema(t2, length) TEMA = 3 * (t1 - t2) + t3 t12 = ta.ema(src, length2) t22 = ta.ema(t12, length2) t32 = ta.ema(t22, length2) TEMA2 = 3 * (t12 - t22) + t32 //TMA TMA = ta.sma(ta.sma(src, math.ceil(length / 2)), math.floor(length / 2) + 1) TMA2 = ta.sma(ta.sma(src, math.ceil(length2 / 2)), math.floor(length2 / 2) + 1) //VAMA [Duyck] mid=ta.ema(src,length) dev=src-mid vol_up=ta.highest(dev,VAMALookback) vol_down=ta.lowest(dev,VAMALookback) VAMA = mid+math.avg(vol_up,vol_down) mid2=ta.ema(src,length2) dev2=src-mid2 vol_up2=ta.highest(dev2,VAMALookback) vol_down2=ta.lowest(dev2,VAMALookback) VAMA2 = mid2+math.avg(vol_up2,vol_down2) //VIDYA [KivancOzbilgic] var VIDYA=0.0 VMAalpha=2/(length+1) ud1=src>src[1] ? src-src[1] : 0 dd1=src<src[1] ? src[1]-src : 0 UD=math.sum(ud1,9) DD=math.sum(dd1,9) CMO=nz((UD-DD)/(UD+DD)) VIDYA := na(VIDYA[1]) ? ta.sma(src, length) : nz(VMAalpha*math.abs(CMO)*src)+(1-VMAalpha*math.abs(CMO))*nz(VIDYA[1]) var VIDYA2=0.0 VMAalpha2=2/(length2+1) ud12=src>src[1] ? src-src[1] : 0 dd12=src<src[1] ? src[1]-src : 0 UD2=math.sum(ud12,9) DD2=math.sum(dd12,9) CMO2=nz((UD2-DD2)/(UD2+DD2)) VIDYA2 := na(VIDYA2[1]) ? ta.sma(src, length2) : nz(VMAalpha2*math.abs(CMO2)*src)+(1-VMAalpha2*math.abs(CMO2))*nz(VIDYA2[1]) //VMA [LazyBear] sc = 1/length pdm = math.max((src - src[1]), 0) mdm = math.max((src[1] - src), 0) var pdmS = 0.0 var mdmS = 0.0 pdmS := ((1 - sc)*nz(pdmS[1]) + sc*pdm) mdmS := ((1 - sc)*nz(mdmS[1]) + sc*mdm) s = pdmS + mdmS pdi = pdmS/s mdi = mdmS/s var pdiS = 0.0 var mdiS = 0.0 pdiS := ((1 - sc)*nz(pdiS[1]) + sc*pdi) mdiS := ((1 - sc)*nz(mdiS[1]) + sc*mdi) d = math.abs(pdiS - mdiS) s1 = pdiS + mdiS var iS = 0.0 iS := ((1 - sc)*nz(iS[1]) + sc*d/s1) hhv = ta.highest(iS, length) llv = ta.lowest(iS, length) d1 = hhv - llv vi = (iS - llv)/d1 var VMA=0.0 VMA := na(VMA[1]) ? ta.sma(src, length) : sc*vi*src + (1 - sc*vi)*nz(VMA[1]) sc2 = 1/length2 pdm2 = math.max((src - src[1]), 0) mdm2 = math.max((src[1] - src), 0) var pdmS2 = 0.0 var mdmS2 = 0.0 pdmS2 := ((1 - sc2)*nz(pdmS2[1]) + sc2*pdm2) mdmS2 := ((1 - sc2)*nz(mdmS2[1]) + sc2*mdm2) s2 = pdmS2 + mdmS2 pdi2 = pdmS2/s2 mdi2 = mdmS2/s2 var pdiS2 = 0.0 var mdiS2 = 0.0 pdiS2 := ((1 - sc2)*nz(pdiS2[1]) + sc2*pdi2) mdiS2 := ((1 - sc2)*nz(mdiS2[1]) + sc2*mdi2) d2 = math.abs(pdiS2 - mdiS2) s12 = pdiS2 + mdiS2 var iS2 = 0.0 iS2 := ((1 - sc2)*nz(iS2[1]) + sc2*d2/s12) hhv2 = ta.highest(iS2, length) llv2 = ta.lowest(iS2, length) d12 = hhv2 - llv2 vi2 = (iS2 - llv2)/d12 var VMA2=0.0 VMA2 := na(VMA2[1]) ? ta.sma(src, length2) : sc2*vi2*src + (1 - sc2*vi2)*nz(VMA2[1]) //WWMA var WWMA=0.0 WWMA := (1/length)*src + (1-(1/length))*nz(WWMA[1]) var WWMA2=0.0 WWMA2 := (1/length2)*src + (1-(1/length2))*nz(WWMA2[1]) //Zero Lag EMA [KivancOzbilgic] EMA1a = ta.ema(src,length) EMA2a = ta.ema(EMA1a,length) Diff = EMA1a - EMA2a ZLEMA = EMA1a + Diff EMA12 = ta.ema(src,length2) EMA22 = ta.ema(EMA12,length2) Diff2 = EMA12 - EMA22 ZLEMA2 = EMA12 + Diff2 // Trend Mapping and Plotting // FastTrend = TrendSelectorInput == "ALMA" ? ALMA : TrendSelectorInput == "DEMA" ? DEMA : TrendSelectorInput == "DSMA" ? EDSMA : TrendSelectorInput == "EMA" ? EMA : TrendSelectorInput == "HMA" ? HMA : TrendSelectorInput == "JMA" ? JMA : TrendSelectorInput == "KAMA" ? KAMA : TrendSelectorInput == "Linear Regression (LSMA)" ? LinReg : TrendSelectorInput == "RMA" ? RMA : TrendSelectorInput == "SMA" ? SMA : TrendSelectorInput == "SMMA" ? SMMA : TrendSelectorInput == "Price Source" ? src : TrendSelectorInput == "TEMA" ? TEMA : TrendSelectorInput == "TMA" ? TMA : TrendSelectorInput == "VAMA" ? VAMA : TrendSelectorInput == "VIDYA" ? VIDYA : TrendSelectorInput == "VMA" ? VMA : TrendSelectorInput == "VWMA" ? VWMA : TrendSelectorInput == "WMA" ? WMA : TrendSelectorInput == "WWMA" ? WWMA : TrendSelectorInput == "ZLEMA" ? ZLEMA : SMA SlowTrend = TrendSelectorInput2 == "ALMA" ? ALMA2 : TrendSelectorInput2 == "DEMA" ? DEMA2 : TrendSelectorInput2 == "DSMA" ? EDSMA2 : TrendSelectorInput2 == "EMA" ? EMA2 : TrendSelectorInput2 == "HMA" ? HMA2 : TrendSelectorInput2 == "JMA" ? JMA2 : TrendSelectorInput2 == "KAMA" ? KAMA2 : TrendSelectorInput2 == "Linear Regression (LSMA)" ? LinReg2 : TrendSelectorInput2 == "RMA" ? RMA2 : TrendSelectorInput2 == "SMA" ? SMA2 : TrendSelectorInput2 == "SMMA" ? SMMA2 : TrendSelectorInput2 == "Price Source" ? src : TrendSelectorInput2 == "TEMA" ? TEMA2 : TrendSelectorInput2 == "TMA" ? TMA2 : TrendSelectorInput2 == "VAMA" ? VAMA2 : TrendSelectorInput2 == "VIDYA" ? VIDYA2 : TrendSelectorInput2 == "VMA" ? VMA2 : TrendSelectorInput2 == "VWMA" ? VWMA2 : TrendSelectorInput2 == "WMA" ? WMA2 : TrendSelectorInput2 == "WWMA" ? WWMA2 : TrendSelectorInput2 == "ZLEMA" ? ZLEMA2 : SMA2 plot(FastTrend, color=color.green, linewidth=LineWidth) plot(SlowTrend, color=color.red, linewidth=LineWidth) //Short & Long Options Long = input.bool(true, "Model Long Trades", group="Core Settings") Short = input.bool(false, "Model Short Trades", group="Core Settings") // Entry & Exit Functions // if (InDateRange and Long==true and FastTrend>SlowTrend) strategy.entry("Long", strategy.long, alert_message="Long") if (InDateRange and Long==true and FastTrend<SlowTrend) strategy.close("Long", alert_message="Close Long") if (InDateRange and Short==true and FastTrend<SlowTrend) strategy.entry("Short", strategy.short, alert_message="Short") if (InDateRange and Short==true and FastTrend>SlowTrend) strategy.close("Short", alert_message="Cover Short") if (not InDateRange) strategy.close_all(alert_message="End of Date Range")