وسائل لوڈ ہو رہے ہیں... لوڈنگ...

ٹرینڈ فالونگ حکمت عملی پر مبنی ٹائم سیریز ڈیکمپریشن اور حجم وزن والے بولنگر بینڈ

مصنف:چاؤ ژانگ، تاریخ: 2023-11-24 11:29:40
ٹیگز:

img

جائزہ

یہ حکمت عملی قیمتوں کے رجحانات ، زیادہ خریدنے اور زیادہ فروخت کی حالتوں کے بارے میں کثیر جہتی فیصلے کرنے کے لئے وقت کی سیریز کی تحلیل ، حجم وزن والی اوسط قیمت ، بولنگر بینڈ اور ڈیلٹا ((OBV-PVT) 4 تکنیکی اشارے کو مربوط کرتی ہے۔

اصول

  1. قیمتوں میں شور اور دورانیہ کو ختم کرنے کے لئے وقت کی سیریز کے تحلیل کا استعمال کریں تاکہ زیادہ درست رجحان کا اندازہ لگایا جاسکے۔
  2. رجحان لائن کی بنیاد پر حجم وزن والی نئی قیمت کا حساب لگائیں۔
  3. زیادہ خریدنے اور زیادہ فروخت کرنے کے حالات کا تعین کرنے کے لئے اختتامی قیمت کی بولنگر بینڈ فی صد چوڑائی (BB٪ B) کا حساب لگائیں۔
  4. ڈیلٹا کے BB٪ B کا حساب لگائیں ((OBV-PVT) قیمت حجم کے فرق کی پیمائش کے طور پر؛
  5. قیمت اور حجم کے اشارے کی کراسنگ اور بولنگر بینڈ اوورشیٹس اور اوورشیٹس پر مبنی تجارتی سگنل تیار کریں۔

فوائد

  1. مضبوط فیصلوں کے لئے قیمت، حجم اور شماریاتی خصوصیات کو یکجا کرتا ہے۔
  2. BB٪ B کے ساتھ مل کر ڈیلٹا ((OBV-PVT) قلیل مدتی overbought / oversold حالات کو بہتر طور پر شناخت کرتا ہے؛
  3. قیمت حجم کراس اوور سگنل کچھ غلط سگنل کو فلٹر کرتے ہیں۔

خطرات

  1. بہت پیچیدہ پیرامیٹر ٹیوننگ؛
  2. قلیل مدت میں ہچکچاہٹ نقصانات میں اضافہ کر سکتی ہے؛
  3. قیمتوں کے حجم کے اختلافات غلط سگنلز کو مکمل طور پر فلٹر نہیں کرتے ہیں۔

پیرامیٹرز جیسے چلتی اوسط ، بولنگر بینڈ کی چوڑائی اور رسک - انعام کے تناسب کو بہتر بنایا جاسکتا ہے تاکہ ہر تجارت میں رسک ایڈجسٹڈ ریٹرن کو بہتر بناتے ہوئے تجارتی تعدد کو کم کیا جاسکے۔

نتیجہ

ٹائم سیریز ڈیکمپریشن ، بولنگر بینڈ ، او بی وی اشارے جیسے ٹولز کو مربوط کرتے ہوئے ، یہ حکمت عملی قلیل مدتی الٹ کی نشاندہی کرنے اور بڑے رجحانات کو پکڑنے کے لئے قیمت حجم تعلقات ، شماریاتی خصوصیات اور رجحان تجزیہ کو جوڑتی ہے۔ کچھ ایسے خطرات بھی ہیں جن کو زیادہ سے زیادہ کارکردگی کے ل param پیرامیٹر ٹیوننگ کے ذریعے حل کرنے کی ضرورت ہے۔


/*backtest
start: 2023-10-24 00:00:00
end: 2023-11-23 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
//// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © oakwhiz and tathal

//@version=4
strategy("BBPBΔ(OBV-PVT)BB", default_qty_type=strategy.percent_of_equity, default_qty_value=100)

startDate = input(title="Start Date", type=input.integer,
     defval=1, minval=1, maxval=31)
startMonth = input(title="Start Month", type=input.integer,
     defval=1, minval=1, maxval=12)
startYear = input(title="Start Year", type=input.integer,
     defval=2010, minval=1800, maxval=2100)

endDate = input(title="End Date", type=input.integer,
     defval=31, minval=1, maxval=31)
endMonth = input(title="End Month", type=input.integer,
     defval=12, minval=1, maxval=12)
endYear = input(title="End Year", type=input.integer,
     defval=2021, minval=1800, maxval=2100)

// Normalize Function
normalize(_src, _min, _max) =>
    // Normalizes series with unknown min/max using historical min/max.
    // _src      : series to rescale.
    // _min, _min: min/max values of rescaled series.
    var _historicMin =  10e10
    var _historicMax = -10e10
    _historicMin := min(nz(_src, _historicMin), _historicMin)
    _historicMax := max(nz(_src, _historicMax), _historicMax)
    _min + (_max - _min) * (_src - _historicMin) / max(_historicMax - _historicMin, 10e-10)
    

// STEP 2:
// Look if the close time of the current bar
// falls inside the date range
inDateRange = true
     
     
// Stop loss & Take Profit Section     
sl_inp = input(2.0, title='Stop Loss %')/100
tp_inp = input(4.0, title='Take Profit %')/100
 
stop_level = strategy.position_avg_price * (1 - sl_inp)
take_level = strategy.position_avg_price * (1 + tp_inp)

icreturn = false
innercandle = if (high < high[1]) and (low > low[1])
    icreturn := true

src = close

float change_src = change(src)
float i_obv = cum(change_src > 0 ? volume : change_src < 0 ? -volume : 0*volume)
float i_pvt = pvt

float result = change(i_obv - i_pvt)

float nresult = ema(normalize(result, -1, 1), 20)



length = input(20, minval=1)
mult = input(2.0, minval=0.001, maxval=50, title="StdDev")
basis = ema(nresult, length)
dev = mult * stdev(nresult, length)
upper = basis + dev
lower = basis - dev
bbr = (nresult - lower)/(upper - lower)



////////////////INPUTS///////////////////
lambda = input(defval = 1000, type = input.float, title = "Smoothing Factor (Lambda)", minval = 1)
leng = input(defval = 100, type = input.integer, title = "Filter Length", minval = 1)
srcc = close

///////////Construct Arrays///////////////
a = array.new_float(leng, 0.0) 
b = array.new_float(leng, 0.0)
c = array.new_float(leng, 0.0)
d = array.new_float(leng, 0.0)
e = array.new_float(leng, 0.0)
f = array.new_float(leng, 0.0)

/////////Initialize the Values///////////
//for more details visit:
//          https://asmquantmacro.com/2015/06/25/hodrick-prescott-filter-in-excel/

ll1 = leng-1
ll2 = leng-2

for i = 0 to ll1
    array.set(a,i, lambda*(-4))
    array.set(b,i, src[i])
    array.set(c,i, lambda*(-4))
    array.set(d,i, lambda*6 + 1)
    array.set(e,i, lambda)
    array.set(f,i, lambda)

array.set(d, 0,  lambda + 1.0)
array.set(d, ll1, lambda + 1.0)
array.set(d, 1,  lambda * 5.0 + 1.0)
array.set(d, ll2, lambda * 5.0 + 1.0)

array.set(c, 0 , lambda * (-2.0))
array.set(c, ll2, lambda * (-2.0))

array.set(a, 0 , lambda * (-2.0))
array.set(a, ll2, lambda * (-2.0))

//////////////Solve the optimization issue/////////////////////
float r = array.get(a, 0)
float s = array.get(a, 1)
float t = array.get(e, 0)
float xmult = 0.0

for i = 1 to ll2
    xmult := r / array.get(d, i-1) 
    array.set(d, i, array.get(d, i) - xmult * array.get(c, i-1))
    array.set(c, i, array.get(c, i) - xmult * array.get(f, i-1))
    array.set(b, i, array.get(b, i) - xmult * array.get(b, i-1))

    xmult := t / array.get(d, i-1)
    r     := s - xmult*array.get(c, i-1)
    array.set(d, i+1, array.get(d, i+1) - xmult * array.get(f, i-1))
    array.set(b, i+1, array.get(b, i+1) - xmult * array.get(b, i-1))
    
    s     := array.get(a, i+1)
    t     := array.get(e, i)

xmult := r / array.get(d, ll2)
array.set(d, ll1, array.get(d, ll1) - xmult * array.get(c, ll2))

x = array.new_float(leng, 0) 
array.set(x, ll1, (array.get(b, ll1) - xmult * array.get(b, ll2)) / array.get(d, ll1))
array.set(x, ll2, (array.get(b, ll2) - array.get(c, ll2) * array.get(x, ll1)) / array.get(d, ll2))

for j = 0 to leng-3
    i = leng-3 - j
    array.set(x, i, (array.get(b,i) - array.get(f,i)*array.get(x,i+2) - array.get(c,i)*array.get(x,i+1)) / array.get(d, i))



//////////////Construct the output///////////////////
o5 = array.get(x,0)

////////////////////Plottingd///////////////////////



TimeFrame = input('1', type=input.resolution)
start = security(syminfo.tickerid, TimeFrame, time)

//------------------------------------------------
newSession = iff(change(start), 1, 0)
//------------------------------------------------
vwapsum = 0.0
vwapsum := iff(newSession, o5*volume, vwapsum[1]+o5*volume)
volumesum = 0.0
volumesum := iff(newSession, volume, volumesum[1]+volume)
v2sum = 0.0
v2sum := iff(newSession, volume*o5*o5, v2sum[1]+volume*o5*o5)
myvwap = vwapsum/volumesum
dev2 = sqrt(max(v2sum/volumesum - myvwap*myvwap, 0))
Coloring=close>myvwap?color.green:color.red
av=myvwap
showBcol = input(false, type=input.bool, title="Show barcolors")
showPrevVWAP = input(false, type=input.bool, title="Show previous VWAP close")
prevwap = 0.0
prevwap := iff(newSession, myvwap[1], prevwap[1])
nprevwap= normalize(prevwap, 0, 1)

l1= input(20, minval=1)
src2 = close
mult1 = input(2.0, minval=0.001, maxval=50, title="StdDev")
basis1 = sma(src2, l1)
dev1 = mult1 * stdev(src2, l1)
upper1 = basis1 + dev1
lower1 = basis1 - dev1
bbr1 = (src - lower1)/(upper1 - lower1)

az = plot(bbr, "Δ(OBV-PVT)", color.rgb(0,153,0,0), style=plot.style_columns)
bz = plot(bbr1, "BB%B", color.rgb(0,125,125,50), style=plot.style_columns)
fill(az, bz, color=color.white)



deltabbr = bbr1 - bbr
oneline = hline(1)
twoline = hline(1.2)
zline = hline(0)
xx = input(.3)
yy = input(.7)
zz = input(-1)
xxx = hline(xx)
yyy = hline(yy)
zzz = hline(zz)
fill(oneline, twoline, color=color.red, title="Sell Zone")
fill(yyy, oneline, color=color.orange, title="Slightly Overbought")
fill(yyy, zline, color=color.white, title="DO NOTHING ZONE")
fill(zzz, zline, color=color.green, title="GO LONG ZONE")

l20 = crossover(deltabbr, 0)
l30 = crossunder(deltabbr, 0)
l40 = crossover(o5, 0)
l50 = crossunder(o5, 0)


z1 = bbr1 >= 1
z2 = bbr1 < 1 and bbr1 >= .7
z3 = bbr1 < .7 and bbr1 >= .3
z4 = bbr1 < .3 and bbr1 >= 0
z5 = bbr1 < 0
a1 = bbr >= 1
a2 = bbr < 1 and bbr >= .7

a4 = bbr < .3 and bbr >= 0
a5 = bbr < 0
b4 = deltabbr < .3 and deltabbr >= 0
b5 = deltabbr < 0
c4 = o5 < .3 and o5 >= 0
c5 = o5 < 0
b1 = deltabbr >= 1
b2 = deltabbr < 1 and o5 >= .7
c1 = o5 >= 1
c2 = o5 < 1 and o5 >= .7

///

n = input(16,"Period")
H = highest(hl2,n)
L = lowest(hl2,n)
hi = H[1]
lo = L[1]
up = high>hi
dn = low<lo
lowerbbh = lowest(10)[1]
bbh = (low == open ?  open < lowerbbh ? open < close ? close > ((high[1] - low[1]) / 2) + low[1] :na  : na : na)




plot(normalize(av,-1,1), linewidth=2, title="Trendline", color=color.yellow)


long5 = close < av and av[0] > av[1]
sell5 = close > av

cancel = false
if open >= high[1]
    cancel = true


long = (long5 or z5 or a5) and (icreturn or bbh or up)
sell = ((z1 or a1) or (l40 and l20)) and (icreturn or dn) and (c1 or b1)
short = ((z1 or z2 or a1 or sell5) and (l40 or l20)) and icreturn
buy= (z5 or z4 or a5 or long5) and (icreturn or dn)


plotshape(long and not sell ? -0.5 : na, title="Long", location=location.absolute, style=shape.circle, size=size.tiny, color=color.green, transp=0)
plotshape(short and not sell? 1 : na, title="Short", location=location.absolute, style=shape.circle, size=size.tiny, color=color.red, transp=0)




if (inDateRange)
    strategy.entry("long", true, when = long )

if (inDateRange) and (strategy.position_size > 0)
    strategy.close_all(when = sell or cancel)
    

if (inDateRange)
    strategy.entry("short", false, when = short )

if (inDateRange) and (strategy.position_size < 0)
    strategy.close_all(when = buy)

مزید