রিসোর্স লোড হচ্ছে... লোডিং...

পাইথন দিয়ে অর্নস্টাইন-উলেনবেক সিমুলেশন

লেখক:এফএমজেড-লিডিয়া, তৈরিঃ ২০২৪-১০-২২ ১০ঃ১৪ঃ৫৯, আপডেটঃ ২০২৪-১০-২৪ ১৩ঃ৪০ঃ৪১

এই প্রবন্ধে, আমরা অর্নস্টাইন-উলেনবেক প্রক্রিয়াটির একটি সারসংক্ষেপ দেব, এর গাণিতিক সূত্র বর্ণনা করব, পাইথন ব্যবহার করে এটি বাস্তবায়ন এবং অনুকরণ করব এবং পরিমাণগত অর্থ এবং সিস্টেম ট্রেডিংয়ের ক্ষেত্রে কিছু বাস্তব অ্যাপ্লিকেশন নিয়ে আলোচনা করব। আমরা একটি উচ্চতর এলোমেলো প্রক্রিয়া মডেল ব্যবহার করব, যা অর্নস্টাইন-উলেনবেক (ওইউ) প্রক্রিয়া নামে পরিচিত, যা সময়সূচীগুলির জন্য মডেলিংয়ের জন্য ব্যবহার করা যেতে পারে যা সমমানের রিগ্রোডেনশন আচরণগুলি দেখায়। এটি বিশেষত সুদের মডেলিংয়ের জন্য দরকারী, যেমন ডেরিভেটিভের মূল্য নির্ধারণে এবং অ্যালগরিদম ট্রেডিংয়ের সময় সিস্টেম ট্রেডিংয়ের জন্য।

অর্নস্টাইন-উলেনবেক প্রক্রিয়া কি?

Ornstein-Uhlenbeck প্রক্রিয়া হল একটি ধারাবাহিক সময়সূচক র্যান্ডম প্রক্রিয়া যা গড় মানের রিগ্রেশন আচরণকে মডেলিং করতে ব্যবহৃত হয়। এর অর্থ হল যে, স্ট্যান্ডার্ড র্যান্ডম ভ্রমন বা ব্রাউন মোশন যা অসীমভাবে বিচরণ করতে পারে তার বিপরীতে, OU প্রক্রিয়াটি প্রায়শই সময়ের সাথে সাথে দীর্ঘমেয়াদী গড়ের দিকে ফিরে আসে। গাণিতিকভাবে, OU প্রক্রিয়াটি এমন একটি নির্দিষ্ট র্যান্ডম ডিফারেন্সিয়াল ইকুয়েশন (SDE) এর সমাধান যা এই গড় মানের রিগ্রেশন আচরণকে নিয়ন্ত্রণ করে। OU প্রক্রিয়াটির SDE নিম্নলিখিত সূত্র দ্বারা দেওয়া হয়ঃ

使用Python进行Ornstein-Uhlenbeck模拟

যেখানে Xt সময় t এ একটি র্যান্ডম প্রসেসকে নির্দেশ করে, যেখানে μ হল দীর্ঘমেয়াদী গড়,θ হল গড় রিগ্রেশন হার,δ হল উদ্বায়িতা, এবং dWt হল উইনার প্রসেস বা স্ট্যান্ডার্ড ব্রাউন মোশন।

ইতিহাস ও প্রয়োগ

Ornstein-Uhlenbeck প্রক্রিয়াটি মূলত ১৯৩০ খ্রিস্টাব্দে লিওনার্ড Ornstein এবং জর্জ ইউজেন Uhlenbeck দ্বারা ব্রাউন গতির গতির অনুকরণ করার জন্য ব্যবহৃত হয়। সময়ের সাথে সাথে এর কার্যকারিতা পদার্থবিজ্ঞানের বাইরেও বিস্তৃত হয়ে উঠেছে এবং জীববিজ্ঞান, রসায়ন, অর্থনীতি এবং অর্থনীতির মতো বিভিন্ন ক্ষেত্রে প্রয়োগ করা হয়েছে।

কোয়ালিটি ফিনান্সিংয়ে, OU প্রক্রিয়াটি এমন ঘটনাগুলির মডেলিংয়ের জন্য বিশেষভাবে কার্যকর যা গড়-মূল্য রিগ্রেশন আচরণ দেখায়। উল্লেখযোগ্য উদাহরণগুলির মধ্যে রয়েছে সুদের হার, বিনিময় হার এবং আর্থিক বাজারের উদ্বায়ীতা। উদাহরণস্বরূপ, জনপ্রিয় সুদের হার মডেল Vasicek মডেলটি সরাসরি OU প্রক্রিয়া থেকে উদ্ভূত।

পরিমাণগত অর্থায়নে গুরুত্ব

অর্নস্টাইন-উহলেনবেক প্রক্রিয়াটি পরিমাণগত অর্থনীতিতে গুরুত্বপূর্ণ, কারণ এটির গড়-মূল্যের প্রত্যাবর্তনের প্রকৃতি এটিকে আর্থিক ভেরিয়েবলগুলির মডেলিংয়ের জন্য একটি প্রাকৃতিক পছন্দ করে তোলে, যা এলোমেলোভাবে চলাফেরা করে না, বরং স্থিতিশীল দীর্ঘমেয়াদী গড়-মূল্যের চারপাশে সরে যায়। এই বৈশিষ্ট্যটি হারের মডেলিংয়ের জন্য গুরুত্বপূর্ণ, যেখানে গড়-মূল্যের প্রত্যাবর্তন কেন্দ্রীয় ব্যাংকের দীর্ঘমেয়াদী স্থিতিশীল হারের উপর প্রভাবকে প্রতিফলিত করে।

উপরন্তু, OU প্রক্রিয়াটি সম্পদ মূল্য নির্ধারণের মডেল (উত্সগত মূল্যায়ন সহ) এবং ঝুঁকি পরিচালনার কৌশলগুলির জন্যও ব্যবহৃত হয়। এটি আরও জটিল মডেলগুলির বিল্ডিং ব্লক হিসাবে কাজ করতে পারে, যেমন কক্স-ইঞ্জার্সল-রস (সিআইআর) মডেল, যা OU প্রক্রিয়াটিকে অ-নেতিবাচক হারের জন্য মডেলিংয়ের জন্য প্রসারিত করে।

প্রধান বৈশিষ্ট্য এবং স্বজ্ঞাততা

Ornstein-Uhlenbeck প্রক্রিয়ার প্রধান বৈশিষ্ট্যগুলি নিম্নরূপ সংক্ষিপ্ত করা যেতে পারেঃ

  • গড় মান প্রত্যাবর্তনঃOU প্রক্রিয়াটি দীর্ঘমেয়াদী গড়ের দিকে ফিরে যাওয়ার প্রবণতা দেখায় μ. এটি ব্রাউন আন্দোলনের মতো প্রক্রিয়াগুলির সাথে একটি স্পষ্ট বিপরীতে, যা এই প্রবণতা দেখায় না।
  • অস্থিরতাঃপ্যারামিটারδ নিয়ন্ত্রণ প্রক্রিয়াতে এলোমেলোতা বা উদ্বায়িততার মাত্রা। উদ্বায়িততা যত বেশি, প্রক্রিয়াটি প্রত্যাবর্তনের আগে এর গড়ের বিচ্যুতি তত বেশি।
  • ফেরার গতিঃপ্যারামিটার θ প্রক্রিয়াটির গড়ের গতি নির্ধারণ করে।
  • স্থিতিশীলতাঃOU প্রক্রিয়াটি স্থিতিশীল, যার অর্থ এটির পরিসংখ্যানগত বৈশিষ্ট্যগুলি সময়ের সাথে পরিবর্তিত হয় না। এটি আর্থিক ক্ষেত্রে স্থিতিশীল সিস্টেমগুলির মডেলিংয়ের জন্য গুরুত্বপূর্ণ।

স্বজ্ঞাতভাবে, আপনি Ornstein-Uhlenbeck প্রক্রিয়াটিকে গড়ের আশেপাশে প্রসারিত স্লিপারগুলির আচরণের মডেলিং হিসাবে বিবেচনা করতে পারেন। যদিও প্রক্রিয়াটি এলোমেলোভাবে ওঠানামা করার কারণে সমতা থেকে বিচ্যুত হতে পারে, তবে স্লিপারগুলির টান প্রবাহ (সমতা প্রত্যাবর্তনের মতো) নিশ্চিত করে যে এটি শেষ পর্যন্ত সমতা ফিরে আসে।

অন্যান্য এলোমেলো প্রক্রিয়ার সাথে তুলনা

যেহেতু OU প্রক্রিয়াটি বিভিন্ন আর্থিক ঘটনাগুলির মডেলিংয়ের সাথে ঘনিষ্ঠভাবে সম্পর্কিত, তাই এটি প্রায়শই অন্যান্য এলোমেলো প্রক্রিয়াগুলির সাথে তুলনা করা হয় (যেমন ব্রাউন আন্দোলন এবং জ্যামিতিক ব্রাউন আন্দোলন (GBM)) । ব্রাউন আন্দোলনের বিপরীতে (ব্রাউন আন্দোলনের কোনও সমতুল্য রিগ্রেশন প্রবণতা নেই), OU প্রক্রিয়াটি সুস্পষ্ট সমতুল্য রিগ্রেশন আচরণ করে। এটি এমন পরিস্থিতিতে মডেলিংয়ের জন্য এটি আরও উপযুক্ত করে তোলে যেখানে ভেরিয়েবলগুলি স্থিতিশীল ভারসাম্যের চারপাশে ওঠানামা করে।

OU প্রক্রিয়াটি সাধারণত স্টক মূল্যের মডেলিংয়ের জন্য ব্যবহৃত GBM এর তুলনায়, যা ড্রিফ্ট এবং ওভালিয়েশন উপাদানগুলি অন্তর্ভুক্ত করে, সূচকীয় বৃদ্ধি প্রদর্শন করে না, বরং এর গড় মানের চারপাশে ওঠানামা করে। GBM সময়ের সাথে সাথে বৃদ্ধি পায় এমন পরিমাণের জন্য মডেলিংয়ের জন্য আরও উপযুক্ত, যখন OU প্রক্রিয়াটি গড় মানের রিগ্রেশন বৈশিষ্ট্যযুক্ত ভেরিয়েবলগুলির জন্য মডেলিংয়ের জন্য উপযুক্ত।

পরিমাণগত অর্থায়নের উদাহরণ

অর্নস্টাইন-উলেনবেক প্রক্রিয়াটি আর্থিক ক্ষেত্রে ব্যাপকভাবে ব্যবহৃত হয়, বিশেষত মডেলিং পরিস্থিতিতে যেখানে গড়-মূল্যের রিগ্রেশন একটি গুরুত্বপূর্ণ বৈশিষ্ট্য। নীচে আমরা কয়েকটি সাধারণ ব্যবহারের ক্ষেত্রে আলোচনা করব।

সুদের হার মডেলিং

OU প্রক্রিয়ার অন্যতম উল্লেখযোগ্য প্রয়োগ হ'ল সুদের হার মডেলিং, বিশেষত ভাসিকের মডেলের আওতায়। ভাসিকের মডেলটি অনুমান করে যে সুদের হারগুলি OU প্রক্রিয়ার অনুসরণ করে, অর্থাৎ সুদের হারগুলি সময়ের সাথে সাথে দীর্ঘমেয়াদী গড়ের দিকে ফিরে আসে। এই বৈশিষ্ট্যটি সুদ হারগুলির সঠিক অ্যানালগ আচরণের জন্য গুরুত্বপূর্ণ, কারণ সুদের হারগুলি প্রায়শই অনির্দিষ্টকালের জন্য ওঠানামা করে না, তবে অর্থনৈতিক অবস্থার দ্বারা প্রভাবিত গড়ের কাছাকাছি ওঠানামা করে।

সম্পদ মূল্য নির্ধারণ

সম্পদের মূল্য নির্ধারণে, বিশেষ করে ফিক্সড-ইনকাম সিকিউরিটির ক্ষেত্রে, ওইউ প্রক্রিয়াটি সাধারণত বন্ডের ফলনের বিবর্তনকে অনুকরণ করতে ব্যবহৃত হয়। ওইউ প্রক্রিয়াটির গড়-মূল্য প্রত্যাবর্তন প্রকৃতি নিশ্চিত করে যে ফলনগুলি তাদের ঐতিহাসিক গড় থেকে খুব বেশি দূরে বিচ্যুত হবে না, যা পর্যবেক্ষণ করা বাজারের আচরণের সাথে সামঞ্জস্যপূর্ণ। এটি বন্ড এবং অন্যান্য হার-সংবেদনশীল সরঞ্জামগুলির মূল্য নির্ধারণের জন্য ওইউ প্রক্রিয়াটিকে একটি মূল্যবান সরঞ্জাম করে তোলে।

প্যারেড ট্রেডিং কৌশল

জোড়া ট্রেডিং একটি বাজার নিরপেক্ষ কৌশল যা দুটি সম্পর্কিত সম্পদের মধ্যে একটি অফসেট পজিশন তৈরির সাথে জড়িত। এই ক্ষেত্রে, OU প্রক্রিয়াটি বিশেষভাবে কার্যকর কারণ এটি দুটি সম্পদের মধ্যে দামের পার্থক্যের মডেলিং করতে পারে, যেখানে দামের পার্থক্যটি সাধারণত গড়-মূল্য প্রত্যাবর্তন হয়। OU প্রক্রিয়াটি ব্যবহার করে দামের পার্থক্যের মডেলিং করে, ব্যবসায়ীরা দামের পার্থক্যটি তাদের গড় থেকে বিচ্যুত হওয়ার সময় লাভজনক প্রবেশ এবং প্রস্থান পয়েন্টগুলি সনাক্ত করতে পারে, গড়-মূল্য প্রত্যাবর্তন পূর্বাভাস দেয়, যার ফলে ট্রেডিং সিগন্যাল তৈরি হয়।

উদাহরণস্বরূপ, যদি দুইটি ফিউচারের মধ্যে দামের পার্থক্য একটি নির্দিষ্ট থ্রেশহোল্ড অতিক্রম করে তবে ব্যবসায়ীরা চমৎকার পারফরম্যান্সের ফিউচারগুলিকে বাদ দিতে পারে এবং দুর্বল পারফরম্যান্সের ফিউচারগুলিকে প্রত্যাশা করে যে দামের পার্থক্যটি তাদের ঐতিহাসিক গড়ের দিকে ফিরে আসবে, যার ফলে বিপরীতটি ঘটলে মুনাফা অর্জন করা যায়।

Ornstein-Uhlenbeck SDE এর উত্তর

Ornstein-Uhlenbeck প্রক্রিয়ার বিভাজক সমীকরণের সূত্র তার সমাধানের ভিত্তি। এই SDE সমাধানের জন্য আমরা সংযোজনীয় ফ্যাক্টর পদ্ধতি ব্যবহার করেছি। আসুন SDE পুনর্লিখন করিঃ

使用Python进行Ornstein-Uhlenbeck模拟

প্রথমত, আমরা উভয় পক্ষের গুণিতক গুণ করব।使用Python进行Ornstein-Uhlenbeck模拟 :

使用Python进行Ornstein-Uhlenbeck模拟

এবং লক্ষ্য করুন, যদি আমরা উভয় পক্ষের যোগ করি使用Python进行Ornstein-Uhlenbeck模拟তাহলে বাম দিকের অংশকে গুণের পার্থক্য হিসেবে উল্লেখ করা যেতে পারেঃ

使用Python进行Ornstein-Uhlenbeck模拟

সুতরাং, যদি আমরা উভয় পক্ষকে 0 থেকে t পর্যন্ত পূর্ণসংখ্যা দেই, তাহলে আমরা পাইঃ

使用Python进行Ornstein-Uhlenbeck模拟

এটি Ornstein-Uhlenbeck SDE এর সাধারণ ব্যাখ্যা।

উপরের সুস্পষ্ট সমাধানগুলি বেশ কয়েকটি গুরুত্বপূর্ণ অর্থ বহন করে। প্রথমটি হলঃ使用Python进行Ornstein-Uhlenbeck模拟প্রথম মানটি সময়ের সাথে সাথে হ্রাস পায়, এবং প্রক্রিয়াটি কীভাবে ধীরে ধীরে ভুলে যায় যে এটি কোথায় শুরু হয়েছিল তা নির্দেশ করে; দ্বিতীয়।使用Python进行Ornstein-Uhlenbeck模拟সময়মতো গড় মানের দিকে প্রবণতা প্রদর্শন করে। তৃতীয়টি এলোমেলোতা প্রবর্তন করে, যেখানে উইনার প্রক্রিয়ার সাথে জড়িত বিভাজক এলোমেলোতা ব্যাখ্যা করে।

এই সমাধানটি Brownian motion-driven random fractions এর সাথে স্থিতিশীলতা-সমমানের regression behaviour এর মধ্যে একটি ভারসাম্যকে জোর দেয়। এই সমাধানটি বোঝা কার্যকরভাবে OU প্রক্রিয়া অনুকরণ করার জন্য গুরুত্বপূর্ণ, যেমনটি নীচে বর্ণিত হয়েছে।

অন্যান্য এলোমেলো প্রক্রিয়ার সাথে সংযোগ

অর্নস্টাইন-উলেনবেক প্রক্রিয়া অন্যান্য বিখ্যাত র্যান্ডম প্রক্রিয়াগুলির সাথে কিছু গুরুত্বপূর্ণ সংযোগ রয়েছে (যেমন ব্রাউন আন্দোলন এবং ভাসিকেক মডেল) ।

ব্রাউন আন্দোলনের সাথে সম্পর্ক

Ornstein-Uhlenbeck প্রসেসকে ব্রাউন আন্দোলনের একটি গড় রেগনেশন সংস্করণ হিসেবে দেখা যায়। ব্রাউন আন্দোলন এমন একটি প্রসেসকে বর্ণনা করে যা স্বতন্ত্র প্রবৃদ্ধি এবং গড় রেগনেশন ছাড়াই প্রবণতা রয়েছে, যখন OU প্রক্রিয়াটি ব্রাউন আন্দোলনের গড় রেগনেশন প্রবর্তন করে, যা প্রবাহিত পদ ব্যবহার করে পরিবর্তিত হয়, যার ফলে প্রক্রিয়াটিকে কেন্দ্রবিন্দুতে ফিরিয়ে আনা হয়। গাণিতিকভাবে, যদি আমরাθ=0 সেট করি তবে OU প্রক্রিয়াটি একটি স্ট্যান্ডার্ড ব্রাউন আন্দোলনের মতো সরলীকৃত হবে যা উদ্বায়ীঃ

使用Python进行Ornstein-Uhlenbeck模拟

সুতরাং, ব্রাউন আন্দোলন একটি OU প্রক্রিয়ার একটি ব্যতিক্রম, যা গড় মানের প্রত্যাবর্তনের অনুপস্থিতির সাথে মিলে যায়।

ভাসিকের মডেলের সাথে সম্পর্ক

ভাসিকেকের মডেলটি সুদের হার মডেলিংয়ে ব্যাপকভাবে ব্যবহৃত হয়, মূলত Ornstein-Uhlenbeck প্রক্রিয়াটি সুদের হার বিবর্তনে প্রয়োগ করা হয়। ভাসিকেকের মডেলটি সুদের হারকে OU প্রক্রিয়া অনুসারে অনুমান করে, যেখানে SDE সংজ্ঞায়িত করা হয়ঃ

使用Python进行Ornstein-Uhlenbeck模拟

এর মধ্যে, r হল স্বল্পমেয়াদী সুদের হার, এবং প্যারামিটারθ, μ এবং δ এর ব্যাখ্যা OU প্রক্রিয়ার সাথে অনুরূপ।

এই সম্পর্কগুলি বোঝার ফলে বিভিন্ন পরিবেশে, বিশেষত আর্থিক ক্ষেত্রে, ওউ প্রক্রিয়াগুলি কীভাবে ব্যবহার করা হয় তা আরও বিস্তৃতভাবে বোঝা যায়। আমরা নীচে অ্যাপ্লিকেশন উদাহরণগুলি নিয়ে আলোচনা করার সময় এই সম্পর্কগুলির বাস্তব অর্থগুলি নিয়ে আলোচনা করব।

পাইথন ব্যবহার করে Ornstein-Uhlenbeck প্রক্রিয়া অনুকরণ

এই অধ্যায়ে, আমরা পাইথন ব্যবহার করে Ornstein-Uhlenbeck (OU) প্রক্রিয়াকে অনুকরণ করার বিষয়ে আলোচনা করব। এটি OU প্রক্রিয়াকে সংজ্ঞায়িত করে এমন একটি র্যান্ডম ডিফারেন্সিয়াল ইকুয়েশন (SDE) কে বিচ্ছিন্ন করতে Euler-Maruyama বিচ্ছিন্নতা ব্যবহার করে।

এসডিই বিচ্ছিন্নতা

আসুন আমরা উপরে এসডিইর গাণিতিক সূত্রগুলি পর্যালোচনা করি এবং প্রতিটি শব্দ সংক্ষিপ্তভাবে বর্ণনা করিঃ

使用Python进行Ornstein-Uhlenbeck模拟

এর মধ্যে,

  • Xt হল সময় t এ প্রক্রিয়ার মান।
  • θ হল গড় মানের প্রত্যাবর্তনের গতি ।
  • μ হল প্রক্রিয়াটির দীর্ঘমেয়াদী গড়।
  • δ হল ভেরিয়েবল রেট প্যারামিটার ।
  • dWt হল উইনার প্রক্রিয়া (স্ট্যান্ডার্ড ব্রাউন মোশন) এর বৃদ্ধি।

কম্পিউটারে এই প্রক্রিয়াটি সিমুলেট করার জন্য, আমাদের ধারাবাহিক সময় এসডিই-তে বিচ্ছিন্নতা করতে হবে। একটি সাধারণ পদ্ধতি হল ইউলার-মারুয়ামা বিচ্ছিন্নতা, যা ছোট বিচ্ছিন্ন সময়ের ধাপগুলি বিবেচনা করে দীর্ঘ হয়।使用Python进行Ornstein-Uhlenbeck模拟Ornstein-Uhlenbeck প্রক্রিয়ার বিচ্ছিন্ন রূপ নিম্নরূপ দেওয়া হয়েছেঃ

使用Python进行Ornstein-Uhlenbeck模拟

এর মধ্যে,使用Python进行Ornstein-Uhlenbeck模拟একটি স্ট্যান্ডার্ড অর্গানাইজড ডিস্ট্রিবিউশন থেকে নেওয়া একটি র্যান্ডম ভেরিয়েবল (যেমন使用Python进行Ornstein-Uhlenbeck模拟) ; এই বিচ্ছিন্নতা আমাদের সময়মতো Xt এর মানকে পুনরাবৃত্তিভাবে গণনা করতে দেয়, যা OU প্রক্রিয়ার আচরণকে অনুকরণ করে।

পাইথন বাস্তবায়ন

এখন আমরা পাইথন দিয়ে Ornstein-Uhlenbeck প্রক্রিয়া বাস্তবায়ন করব। নিচে আমরা শুধুমাত্র NumPy এবং Matplotlib পাইথন লাইব্রেরি ব্যবহার করব।

প্রথমে, আমরা NumPy এবং Matplotlib কে স্ট্যান্ডার্ড পদ্ধতিতে ইনপুট করি; তারপর, আমরা OU মডেলের জন্য সমস্ত পরামিতি নির্ধারণ করি; তারপর, আমরা একটি N দৈর্ঘ্যের NumPy অ্যারে আগে থেকে বরাদ্দ করি, যাতে OU পথ গণনা করার পরে এটি যোগ করা যায়; তারপর আমরা N-1 ধাপটি পুনরাবৃত্তি করি ((ধাপ 1 হল নির্ধারিত প্রাথমিক শর্ত X0)), অ্যালগরিয়ামটি এলোমেলোভাবে ইনক্রিমেন্ট DW, এবং তারপরে উপরে বর্ণিত গাণিতিক সূত্র অনুসারে OU পথের পরবর্তী প্রজন্ম গণনা করি; অবশেষে, Matplotlib ব্যবহার করে পথের ইতিহাস আঁকুন।

import numpy as np
import matplotlib.pyplot as plt

# Parameters for the OU process
theta = 0.7      # Speed of mean reversion
mu = 0.0         # Long-term mean
sigma = 0.3      # Volatility
X0 = 1.0         # Initial value
T = 10.0         # Total time
dt = 0.01        # Time step
N = int(T / dt)  # Number of time steps

# Pre-allocate array for efficiency
X = np.zeros(N)
X[0] = X0

# Generate the OU process
for t in range(1, N):
    dW = np.sqrt(dt) * np.random.normal(0, 1)
    X[t] = X[t-1] + theta * (mu - X[t-1]) * dt + sigma * dW

# Plot the result
plt.plot(np.linspace(0, T, N), X)
plt.title("Ornstein-Uhlenbeck Process Simulation")
plt.xlabel("Time")
plt.ylabel("X(t)")
plt.show()

ছবির ফলাফল নিচে দেখানো হলঃ

使用Python进行Ornstein-Uhlenbeck模拟

পাইথন ব্যবহার করে Ornstein-Uhlenbeck প্রক্রিয়া সিমুলেশন

লক্ষ্য করুন কিভাবে এই প্রক্রিয়াটি প্রাথমিক অবস্থার থেকে দ্রুত X0=1 থেকে μ=0 এর গড় মান পর্যন্ত টানছে, এবং তারপর যখন এটি এই গড় মান থেকে বিচ্যুত হয়, তখন এটি এই গড় মানের দিকে ফিরে যাওয়ার প্রবণতা দেখায়।

সংক্ষিপ্তসার এবং পরবর্তী পদক্ষেপ

এই প্রবন্ধে, আমরা অর্নস্টাইন-উলেনবেক প্রসেসগুলিকে সংক্ষিপ্তভাবে বর্ণনা করেছি, এর গাণিতিক সূত্রগুলি বর্ণনা করেছি এবং ধারাবাহিক সময় এসডিইগুলির বিচ্ছিন্ন সংস্করণগুলি অনুকরণ করার জন্য পাইথনের মৌলিক বাস্তবায়নগুলি সরবরাহ করেছি। পরবর্তী নিবন্ধগুলিতে, আমরা আরও জটিল এসডিইগুলি যা OU প্রসেসগুলির উপর ভিত্তি করে নির্মিত হয় তা বিশ্লেষণ করব এবং সেগুলি কীভাবে সিস্টেম ট্রেডিং এবং ডেরিভেটিভ মূল্য নির্ধারণের অ্যাপ্লিকেশনগুলিতে ব্যবহার করা যায় তা শিখব।

সম্পূর্ণ কোড

# OU process simulation

import numpy as np
import matplotlib.pyplot as plt

# Parameters for the OU process
theta = 0.7      # Speed of mean reversion
mu = 0.0         # Long-term mean
sigma = 0.3      # Volatility
X0 = 1.0         # Initial value
T = 30.0         # Total time
dt = 0.01        # Time step
N = int(T / dt)  # Number of time steps

# Pre-allocate array for efficiency
X = np.zeros(N)
X[0] = X0

# Generate the OU process
for t in range(1, N):
    dW = np.sqrt(dt) * np.random.normal(0, 1)
    X[t] = X[t-1] + theta * (mu - X[t-1]) * dt + sigma * dW

# Plot the result
plt.plot(np.linspace(0, T, N), X)
plt.title("Ornstein-Uhlenbeck Process Simulation")
plt.xlabel("Time")
plt.ylabel("X(t)")
plt.show()

মূল লিংকঃhttps://www.quantstart.com/articles/ornstein-uhlenbeck-simulation-with-python/


আরও দেখুন