Die Ressourcen sind geladen. Beförderung...

Python-Version der Commodity Futures Intertemporal Bollinger Hedge Strategy (nur für Studienzwecke)

Schriftsteller:Gutes, Erstellt: 2020-06-20 10:52:34, Aktualisiert: 2025-01-14 20:40:43

Python version of Commodity Futures Intertemporal Bollinger Hedge Strategy (Study purpose only)

Die zuvor geschriebene intertemporale Arbitrage-Strategie erfordert die manuelle Eingabe des Hedging-Spreads für die Eröffnung und Schließung von Positionen. Das Beurteilen der Preisdifferenz ist subjektiver. In diesem Artikel werden wir die vorherige Hedging-Strategie auf die Strategie der Verwendung des BOLL-Indikators zur Eröffnung und Schließung von Positionen ändern.

class Hedge:
    'Hedging control class'
    def __init__(self, q, e, initAccount, symbolA, symbolB, maPeriod, atrRatio, opAmount):
        self.q = q 
        self.initAccount = initAccount
        self.status = 0
        self.symbolA = symbolA
        self.symbolB = symbolB
        self.e = e
        self.isBusy = False 
        
        self.maPeriod = maPeriod
        self.atrRatio = atrRatio
        self.opAmount = opAmount
        self.records = []
        self.preBarTime = 0
        
    def poll(self):
        if (self.isBusy or not exchange.IO("status")) or not ext.IsTrading(self.symbolA):
            Sleep(1000)
            return 

        insDetailA = exchange.SetContractType(self.symbolA)
        if not insDetailA:
            return 

        recordsA = exchange.GetRecords()
        if not recordsA:
            return 

        insDetailB = exchange.SetContractType(self.symbolB)
        if not insDetailB:
            return 

        recordsB = exchange.GetRecords()
        if not recordsB:
            return 

        # Calculate the spread price K line
        if recordsA[-1]["Time"] != recordsB[-1]["Time"]:
            return 

        minL = min(len(recordsA), len(recordsB))
        rA = recordsA.copy()
        rB = recordsB.copy()

        rA.reverse()
        rB.reverse()
        count = 0
        
        arrDiff = []
        for i in range(minL):
            arrDiff.append(rB[i]["Close"] - rA[i]["Close"])
        arrDiff.reverse()
        if len(arrDiff) < self.maPeriod:
            return 

        # Calculate Bollinger Bands indicator
        boll = TA.BOLL(arrDiff, self.maPeriod, self.atrRatio)

        ext.PlotLine("upper trail", boll[0][-2], recordsA[-2]["Time"])
        ext.PlotLine("middle trail", boll[1][-2], recordsA[-2]["Time"])
        ext.PlotLine("lower trail", boll[2][-2], recordsA[-2]["Time"])
        ext.PlotLine("Closing price spread", arrDiff[-2], recordsA[-2]["Time"])

        LogStatus(_D(), "upper trail:", boll[0][-1], "\n", "middle trail:", boll[1][-1], "\n", "lower trail:", boll[2][-1], "\n", "Current closing price spread:", arrDiff[-1])
        
        action = 0
        # Signal trigger
        if self.status == 0:
            if arrDiff[-1] > boll[0][-1]:
                Log("Open position A buy B sell", ", A latest price:", recordsA[-1]["Close"], ", B latest price:", recordsB[-1]["Close"], "#FF0000")
                action = 2
                # Add chart markers
                ext.PlotFlag(recordsA[-1]["Time"], "A buy B sell", "Positive")
            elif arrDiff[-1] < boll[2][-1]:
                Log("Open position A sell B buy", ", A latest price:", recordsA[-1]["Close"], ", B latest price:", recordsB[-1]["Close"], "#FF0000")
                action = 1
                # Add chart markers
                ext.PlotFlag(recordsA[-1]["Time"], "A sell B buy", "Negative")
        elif self.status == 1 and arrDiff[-1] > boll[1][-1]:
            Log("Close position A buy B sell", ", A latest price:", recordsA[-1]["Close"], ", B latest price:", recordsB[-1]["Close"], "#FF0000")
            action = 2
            # Add chart markers
            ext.PlotFlag(recordsA[-1]["Time"], "A buy B sell", "Close Negative")
        elif self.status == 2 and arrDiff[-1] < boll[1][-1]:
            Log("Close position A sell B buy", ", A latest price:", recordsA[-1]["Close"], ", B latest price:", recordsB[-1]["Close"], "#FF0000")
            action = 1 
            # Add chart markers
            ext.PlotFlag(recordsA[-1]["Time"], "A sell B buy", "Close Positive")


        # Execute specific instructions
        if action == 0:
            return 
        
        self.isBusy = True
        tasks = []
        if action == 1:
            tasks.append([self.symbolA, "sell" if self.status == 0 else "closebuy"])
            tasks.append([self.symbolB, "buy" if self.status == 0 else "closesell"])
        elif action == 2:
            tasks.append([self.symbolA, "buy" if self.status == 0 else "closesell"])
            tasks.append([self.symbolB, "sell" if self.status == 0 else "closebuy"])

        def callBack(task, ret):
            def callBack(task, ret):
                self.isBusy = False
                if task["action"] == "sell":
                    self.status = 2
                elif task["action"] == "buy":
                    self.status = 1
                else:
                    self.status = 0
                    account = _C(exchange.GetAccount)
                    LogProfit(account["Balance"] - self.initAccount["Balance"], account)
            self.q.pushTask(self.e, tasks[1][0], tasks[1][1], self.opAmount, callBack)

        self.q.pushTask(self.e, tasks[0][0], tasks[0][1], self.opAmount, callBack)



def main():
    SetErrorFilter("ready|login|timeout")
    Log("Connecting to the trading server...")
    while not exchange.IO("status"):
        Sleep(1000)

    Log("Successfully connected to the trading server")
    initAccount = _C(exchange.GetAccount)
    Log(initAccount)

    def callBack(task, ret):
        Log(task["desc"], "success" if ret else "failure")

    q = ext.NewTaskQueue(callBack)
    p = ext.NewPositionManager()
    if CoverAll:
        Log("Start closing all remaining positions...")
        p.CoverAll()
        Log("Operation complete")

    t = Hedge(q, exchange, initAccount, SA, SB, MAPeriod, ATRRatio, OpAmount)
    while True:
        q.poll()
        t.poll()

Einstellung der Strategieparameter:

Python version of Commodity Futures Intertemporal Bollinger Hedge Strategy (Study purpose only)

Der Gesamtrahmen der Strategie ist im Wesentlichen derselbe wie derPython-Version der intertemporalen Absicherungsstrategie für Rohstofffutures, mit der Ausnahme, dass die entsprechenden BOLL-Indikatorparameter hinzugefügt werden. Wenn die Strategie ausgeführt wird, werden die K-Liniendaten der beiden Kontrakte erhalten, und dann wird die Preisdifferenz berechnet, um den Spread zu berechnen.TA.BOLLWenn der Spread die oberen Bollinger Bands überschreitet, wird er abgesichert, und wenn er die unteren Bollinger Bands berührt, wird er gegenwärtig betrieben.

Rücktest:

Python version of Commodity Futures Intertemporal Bollinger Hedge Strategy (Study purpose only) Python version of Commodity Futures Intertemporal Bollinger Hedge Strategy (Study purpose only) Python version of Commodity Futures Intertemporal Bollinger Hedge Strategy (Study purpose only)

Dieser Artikel ist hauptsächlich nur zu Studienzwecken bestimmt. Vollständige Strategie:https://www.fmz.com/strategy/213826


Inhalte dazu

Weitere Informationen