Die Ressourcen sind geladen. Beförderung...

Aufwärtstrend- und Überverkauft-Index-Swing-Handelssystemstrategie

Schriftsteller:ChaoZhang, Datum: 2023-09-11 11:35:33
Tags:

Steigende Trends und mittlere Umkehrung mit dem I11L Hypertrend

Die I11L Hypertrend-Strategie nutzt ein Momentum-Scoring-System über mehrere Zeitrahmen hinweg, um Überverkaufsniveaus zum Kaufen und Aufwärtstrends zum Handel zu identifizieren.

Wie die Strategie funktioniert

Zu den wichtigsten Komponenten gehören:

  • Punktesystem, das EMA/SMA über 20 Zeiträume vergleicht
  • Hohe Punktzahl zeigt Aufwärtstrend, niedrige Punktzahl überverkaufte Bedingungen
  • Kreuzungen von als Ein-/Ausgangssignale verwendeten Punkten
  • Nachläufiger Stop-Loss zum Schutz der offenen Gewinne
  • Festes Gewinnziel auf Basis des Einstiegspreises

Longs werden bei Überverkauf umgekehrt eingegeben, wenn sich die Punkte im Aufwärtstrend kreuzen.

Ein Trailing-Stop sperrt die Gewinne, während der Take-Profit bei einem definierten Risiko/Rendite-Multiplikator ausgeht.

Vorteile des Systems I11L

Die wichtigsten Vorteile dieses Ansatzes sind:

  • Kombiniert bedeutet Umkehrung und Trendfolgung
  • Die Bewertung passt sich den sich ändernden Marktbedingungen an
  • Mehrere Zeitrahmen identifizieren Wendepunkte
  • Trailing Stop automatisiert das Handelsmanagement
  • Komponenten steigern die Rendite in starken Trends

Das dynamische Scoring-System liefert wertvolle Erkenntnisse für den Handel sowohl mit Umkehrungen als auch mit Ausbrüchen.

Mögliche Schwächen und Risiken

Es gibt jedoch einige Einschränkungen:

  • Wahrscheinliche Überoptimierung anhand vergangener Daten
  • Verzögerte Ergebnisse und verspätete Signaleingaben
  • Mehrere zu konfigurierende Parameter
  • Anfällig für Whipsaws in schwierigen Zeiten
  • Keine Handelsfilterung für hohe Wahrscheinlichkeit

Vergangene Leistungsindikatoren können irreführend sein, wenn sie nicht im Voraus getestet werden. Vorsichtige Optimierung und Risikomanagement sind erforderlich.

Schlüssel-Tuning-Parameter

Einige wichtige Eingaben, die optimiert werden können:

  • Anzahl der EMA/SMA im Punktesystem
  • Dauer der Durchschnittsperioden
  • Überverkauft/Wachstumstrend-Kreuzungsschwellen
  • Stop-Loss-Distanz zum Preis
  • Übernahme von Gewinnrisiko-/Ertragsmultiplum

Durch eine solide Strategie wird die Performance auf den Märkten der Bullen, Bären und der Range-Binded ausgewogen.

Zusammenfassung

Der I11L Hypertrend bietet einen systematischen Prozess für den Handel mit überverkauften Bounces und Aufwärtstrends. Mit der richtigen Konfiguration und dem Risikomanagement kann dieser Dynamikansatz langfristig einen Vorteil bieten.


/*backtest
start: 2023-01-01 00:00:00
end: 2023-04-15 00:00:00
period: 8h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=5
// strategy("I11L Hypertrend",overlay=false, initial_capital=1000000,default_qty_value=1000000,default_qty_type=strategy.cash,commission_type=strategy.commission.percent,commission_value=0.00)
strategy.initial_capital=50000
tradingMode = input.string("Oversold or Trend", "Trading Mode", ["Oversold or Trend", "Always Buy"], tooltip="Choose the Trading Mode by trying Both in your Backtesting. I use it if one is far better then the other one.")
 
invertStrategy = tradingMode == "Trend" ? true : false
compoundingMode = input.bool(false,"Work with the total equity")
useTSL = input.bool(true,"Use a trailing SL")
useTP = input.bool(true,"Use a TP")
scoreLookbackDistance = input.int(20, step=1,title="Lookbackdistance for the Score")
scoreLoopCountTo = 20
leverage = input.float(1.0,"Leverage (x)",[20,10,5,2,1])
SL_Factor = 1 - input.float(3.0,"Risk Capital per Trade unleveraged (%)", minval=0.1, maxval=100, step=0.25) / 100 / leverage
TPFactor = input.float(1.2, step=0.1)

chooseDate = input.string(title="Select Date", defval="All available Records", options=["Start-2012","2012-Now","All available Records"],tooltip="Seperation works best for 8hr cfd markets, you might want to finetune your Settings in the past and see if the future results (2010 to now) are better then random")
dateFrom = chooseDate == "Start-2012" ? timestamp("01 Jan 1970 00:00") : chooseDate == "2012-Now" ? timestamp("01 Jan 2012 00:00") : timestamp("01 Jan 1970 00:00")
dateTo = chooseDate == "Start-2012" ? timestamp("31 Dec 2011 23:59") : chooseDate == "2012-Now" ? timestamp("31 Dec 2170 23:59") : timestamp("31 Dec 2170 23:59")
inDateRange = (time >= dateFrom) and (time < dateTo)

var disableAdditionalBuysThisDay = false
var minuteOfLastSell = 0


if(dayofmonth != dayofmonth[1])
    disableAdditionalBuysThisDay := false


longStopPrice = 0.0
longStopPrice := if (strategy.position_size > 0)
    if(useTSL)
        math.max(high * SL_Factor, longStopPrice[1])
    else
        strategy.position_avg_price*SL_Factor
else
    0

if(strategy.position_size != strategy.position_size[1])
    disableAdditionalBuysThisDay := true

//Trade Logic
//isOversold
SCORE = 0
loopCount = 1
for i=0 to scoreLoopCountTo
    trendLengthAdjusted = loopCount
    loopCount := loopCount + 1 
    if(ta.ema(close,trendLengthAdjusted) / ta.sma(close,trendLengthAdjusted) > 1)
        SCORE := SCORE + 1
 
SCORE_ema50 = ta.ema(SCORE,scoreLookbackDistance)
SCORE_sma50 = ta.sma(SCORE,scoreLookbackDistance)
isOversold = ta.crossover(SCORE_sma50 / SCORE_ema50,1.0)
isTrend = ta.crossover(SCORE_ema50 / SCORE_sma50,1.0)


isBuy = isTrend or isOversold or tradingMode == "Always Buy"


if(isBuy and not(disableAdditionalBuysThisDay) and inDateRange)
    if(compoundingMode)
        strategy.entry("Buy", strategy.long, (strategy.equity / close) * leverage)
    else
        strategy.entry("Buy", strategy.long, (strategy.initial_capital / close) * leverage)


if(strategy.position_size > 0)
    strategy.exit("TSL", "Buy", stop=longStopPrice)
    if(useTP) 
        strategy.close("Buy",  when=close > strategy.position_avg_price * (1 + (1 - SL_Factor) * TPFactor), comment="TP")


findTrendOrOversold(i) => ta.ema(close,i) / ta.sma(close,i)

plot(1 + 100 * (findTrendOrOversold(1) - 1),color = findTrendOrOversold(1) > 1 ? #6efa7b44 : #ff222244)
plot(1 + 100 * (findTrendOrOversold(2) - 1),color = findTrendOrOversold(2) > 1 ? #73fa7a44 : #ff302244)
plot(1 + 100 * (findTrendOrOversold(3) - 1),color = findTrendOrOversold(3) > 1 ? #78fb7944 : #ff3a2244)
plot(1 + 100 * (findTrendOrOversold(4) - 1),color = findTrendOrOversold(4) > 1 ? #7cfb7844 : #ff432244)
plot(1 + 100 * (findTrendOrOversold(5) - 1),color = findTrendOrOversold(5) > 1 ? #81fb7744 : #ff4b2244)
plot(1 + 100 * (findTrendOrOversold(6) - 1),color = findTrendOrOversold(6) > 1 ? #85fc7644 : #ff522344)
plot(1 + 100 * (findTrendOrOversold(7) - 1),color = findTrendOrOversold(7) > 1 ? #89fc7644 : #fe592444)
plot(1 + 100 * (findTrendOrOversold(8) - 1),color = findTrendOrOversold(8) > 1 ? #8dfc7544 : #fe602544)
plot(1 + 100 * (findTrendOrOversold(9) - 1),color = findTrendOrOversold(9) > 1 ? #91fc7444 : #fe662744)
plot(1 + 100 * (findTrendOrOversold(10) - 1),color = findTrendOrOversold(10) > 1 ? #95fd7344 : #fe6b2944)
plot(1 + 100 * (findTrendOrOversold(11) - 1),color = findTrendOrOversold(11) > 1 ? #99fd7344 : #fd712b44)
plot(1 + 100 * (findTrendOrOversold(12) - 1),color = findTrendOrOversold(12) > 1 ? #9dfd7244 : #fd762d44)
plot(1 + 100 * (findTrendOrOversold(13) - 1),color = findTrendOrOversold(13) > 1 ? #a1fd7144 : #fd7b3044)
plot(1 + 100 * (findTrendOrOversold(14) - 1),color = findTrendOrOversold(14) > 1 ? #a4fe7144 : #fd803244)
plot(1 + 100 * (findTrendOrOversold(15) - 1),color = findTrendOrOversold(15) > 1 ? #a8fe7044 : #fc853544)
plot(1 + 100 * (findTrendOrOversold(16) - 1),color = findTrendOrOversold(16) > 1 ? #abfe7044 : #fc8a3944)
plot(1 + 100 * (findTrendOrOversold(17) - 1),color = findTrendOrOversold(17) > 1 ? #affe6f44 : #fc8f3c44)
plot(1 + 100 * (findTrendOrOversold(18) - 1),color = findTrendOrOversold(18) > 1 ? #b2ff6f44 : #fc933f44)
plot(1 + 100 * (findTrendOrOversold(19) - 1),color = findTrendOrOversold(19) > 1 ? #b6ff6e44 : #fb984344)
plot(1 + 100 * (findTrendOrOversold(20) - 1),color = findTrendOrOversold(20) > 1 ? #b9ff6e44 : #fb9c4744) 

plot(invertStrategy ? SCORE_ema50 / SCORE_sma50 : SCORE_sma50 / SCORE_ema50, color=(invertStrategy and isTrend) or (not(invertStrategy) and isOversold) ? color.green : color.gray, linewidth=2)
plot(1,color=color.white)

Mehr