Die Ressourcen sind geladen. Beförderung...

Die Strategie des glatten gleitenden Durchschnittsbandes

Schriftsteller:ChaoZhang, Datum: 2023-12-11 14:48:35
Tags:

img

Übersicht

Diese Strategie konstruiert eine glatte Preisspanne mit glatten gleitenden Durchschnitten und integriert verschiedene glatte gleitende Durchschnitte, um den Trend in Echtzeit zu filtern.

Strategieprinzip

  1. Erstellen Sie eine glatte Preisspanne, um Preisänderungen anhand glatter gleitender Durchschnitte zu verfolgen.
  2. Die Strategie unterstützt verschiedene gleitende Durchschnittsarten als Berechnungsmethode für glatte gleitende Durchschnittswerte, wie EMA, SMMA, KAMA usw.
  3. Es unterstützt 1-5 Ebenen der Glattigkeit der Stapelung auf diesen gleitenden Durchschnitten, um ein noch glatteres Preisband zu erhalten.
  4. Es unterstützt auch das Hinzufügen von Bollinger-Bändern zwischen Preisen und gleitenden Durchschnitten, um Preisänderungen besser zu erfassen.
  5. Durch die Aktivierung eines zusätzlichen gleitenden Durchschnittsfilters kann es Schwankungen besser filtern und Trendrichtungen identifizieren.
  6. In Kombination mit Mustererkennungsindikatoren kann es automatisch Kauf- und Verkaufssignale erkennen.

Durch die Konstruktion einer reibungslosen Preisspanne zur Erfassung von Preistrends und die Integration eines gleitenden Durchschnittsfilters zur Bestätigung von Trendrichtungen gehört diese Strategie zu einer typischen Trendfolgestrategie.

Vorteile

  1. Durch die Konstruktion von Preisbanden können sich die Preisentwicklungsschwankungen reibungsloser verfolgen und die Wahrscheinlichkeit verpasster Chancen verringert werden.
  2. Die Unterstützung mehrerer gleitender Durchschnittsarten ermöglicht die Auswahl geeigneter gleitender Durchschnittswerte auf der Grundlage verschiedener Zeitrahmen und Produkte, wodurch die Anpassungsfähigkeit der Strategie verbessert wird.
  3. 1-5 Ebenen der Glatzheit des Stapelns können die Fähigkeit zur Verfolgung von Preisänderungen erheblich verbessern und Trendumkehrpunkte präziser erfassen.
  4. Der gleitende Durchschnittsfilter kann ungültige Signale effektiv reduzieren und die Gewinnrate verbessern.
  5. Durch die Anpassung der gleitenden Durchschnittslängen kann sie an verschiedene Zeitrahmen angepasst werden.
  6. Die Unterstützung eines schwarzen Glasbildschirms ermöglicht eine klare und intuitive Beobachtung der Preisentwicklung.

Risiken

  1. Die Marktentwicklung der Märkte ist in den letzten Jahren stark beeinflusst worden.
  2. Bei starken Preisschwankungen und -stürzen kann die Verzögerung der glatten gleitenden Durchschnitte den besten Einstiegszeitpunkt verpassen.
  3. Eine übermäßige Stapelung gleitender Durchschnitte kann zu glatte Preisveränderungen verursachen und zu ungenauer Identifizierung von Kauf- und Verkaufspunkten führen.
  4. Wenn die aktivierten gleitenden Durchschnittslängenparameter nicht richtig eingestellt sind, kann dies zu einer großen Anzahl falscher Signale führen.

Lösungen:

  1. Um die Reaktion auf Preisänderungen zu beschleunigen, sollten die gleitenden Durchschnittslängen angemessen verkürzt werden.
  2. Anpassung der Stapelzeiten zur Verringerung der Überglättlichkeit.
  3. Optimierung und Prüfung von Kombinationen von gleitenden Durchschnitten zur Auswahl optimaler Parameter.
  4. Verwenden Sie die Überprüfung in mehreren Zeitrahmen mit anderen Indikatoren, um falsche Signale zu reduzieren.

Optimierungsrichtlinien

  1. Test und Optimierung von Kombinationen von gleitenden Durchschnittsarten zur Auswahl optimaler Parameter.
  2. Test und Optimierung der gleitenden Durchschnittslängenparameter, um sich an mehr Produkte und Zeitrahmen anzupassen.
  3. Versuchen Sie, verschiedene Zeitpunkte für die Glatzigkeit des Stapelns zu wählen, um den optimalen Gleichgewichtspunkt zu finden.
  4. Versuchen Sie, Bollinger-Bänder als Hilfsindikator hinzuzufügen.
  5. Versuche verschiedene zusätzliche gleitende Durchschnitte als Filter.
  6. Verwenden Sie die Überprüfung in mehreren Zeitrahmen mit anderen Indikatoren.

Schlussfolgerung

Diese Strategie gehört zu einer typischen Trend-Folge-Strategie, die die Preisentwicklungen kontinuierlich durch den Aufbau glatter gleitender Durchschnittsbänder verfolgt und ungültige Signale mit unterstützenden Filtern vermeidet. Ihr Vorteil liegt darin, glatte Preisbänder zu konstruieren, um Wende in den Preistrends besser zu erfassen. Sie birgt auch bestimmte Risiken von Verzögerungen. Durch Parameteroptimierung und Indikatoroptimierung kann die Strategieleistung kontinuierlich verbessert werden und lohnt sich für weitere Forschung.


/*backtest
start: 2023-12-03 00:00:00
end: 2023-12-10 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
// Copyright (c) 2007-present Jurik Research and Consulting. All rights reserved.
// Copyright (c) 2018-present, Alex Orekhov (everget)
// Thanks to everget for code for more advanced moving averages
// Smooth Moving Average Ribbon [STRATEGY] @PuppyTherapy script may be freely distributed under the MIT license.
strategy( title="Smooth Moving Average Ribbon [STRATEGY] @PuppyTherapy", overlay=true )

// ---- CONSTANTS ----
lsmaOffset = 1
almaOffset = 0.85
almaSigma  = 6
phase = 2
power = 2

// ---- GLOBAL FUNCTIONS ----
kama(src, len)=>
    xvnoise = abs(src - src[1])
    nfastend = 0.666
    nslowend = 0.0645
    nsignal = abs(src - src[len])
    nnoise = sum(xvnoise, len)
    nefratio = iff(nnoise != 0, nsignal / nnoise, 0)
    nsmooth = pow(nefratio * (nfastend - nslowend) + nslowend, 2)
    nAMA = 0.0
    nAMA := nz(nAMA[1]) + nsmooth * (src - nz(nAMA[1]))

t3(src, len)=>
    xe1_1 = ema(src,    len)
    xe2_1 = ema(xe1_1,  len)
    xe3_1 = ema(xe2_1,  len)
    xe4_1 = ema(xe3_1,  len)
    xe5_1 = ema(xe4_1,  len)
    xe6_1 = ema(xe5_1,  len)
    b_1 = 0.7
    c1_1 = -b_1*b_1*b_1
    c2_1 = 3*b_1*b_1+3*b_1*b_1*b_1
    c3_1 = -6*b_1*b_1-3*b_1-3*b_1*b_1*b_1
    c4_1 = 1+3*b_1+b_1*b_1*b_1+3*b_1*b_1
    nT3Average_1 = c1_1 * xe6_1 + c2_1 * xe5_1 + c3_1 * xe4_1 + c4_1 * xe3_1
    
// The general form of the weights of the (2m + 1)-term Henderson Weighted Moving Average
getWeight(m, j) =>
    numerator = 315 * (pow(m + 1, 2) - pow(j, 2)) * (pow(m + 2, 2) - pow(j, 2)) * (pow(m + 3, 2) - pow(j, 2)) * (3 * pow(m + 2, 2) - 11 * pow(j, 2) - 16)
    denominator = 8 * (m + 2) * (pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 1) * (4 * pow(m + 2, 2) - 9) * (4 * pow(m + 2, 2) - 25)

    denominator != 0
         ? numerator / denominator
         : 0

hwma(src, termsNumber) =>
    sum = 0.0
    weightSum = 0.0
    
    termMult = (termsNumber - 1) / 2

    for i = 0 to termsNumber - 1
        weight = getWeight(termMult, i - termMult)
        sum := sum + nz(src[i]) * weight
        weightSum := weightSum + weight

    sum / weightSum

get_jurik(length, phase, power, src)=>
    phaseRatio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
    beta = 0.45 * (length - 1) / (0.45 * (length - 1) + 2)
    alpha = pow(beta, power)
    jma = 0.0
    e0 = 0.0
    e0 := (1 - alpha) * src + alpha * nz(e0[1])
    e1 = 0.0
    e1 := (src - e0) * (1 - beta) + beta * nz(e1[1])
    e2 = 0.0
    e2 := (e0 + phaseRatio * e1 - nz(jma[1])) * pow(1 - alpha, 2) + pow(alpha, 2) * nz(e2[1])
    jma := e2 + nz(jma[1])

variant(src, type, len ) =>
    v1 = sma(src, len)                                                  // Simple
    v2 = ema(src, len)                                                  // Exponential
    v3 = 2 * v2 - ema(v2, len)                                          // Double Exponential
    v4 = 3 * (v2 - ema(v2, len)) + ema(ema(v2, len), len)               // Triple Exponential
    v5 = wma(src, len)                                                  // Weighted
    v6 = vwma(src, len)                                                 // Volume Weighted
    v7 = na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len    // Smoothed
    v8 = wma(2 * wma(src, len / 2) - wma(src, len), round(sqrt(len)))   // Hull
    v9 = linreg(src, len, lsmaOffset)                                   // Least Squares
    v10 = alma(src, len, almaOffset, almaSigma)                         // Arnaud Legoux
    v11 = kama(src, len)                                                // KAMA
    ema1 = ema(src, len)
    ema2 = ema(ema1, len)
    v13 = t3(src, len)                                                  // T3
    v14 = ema1+(ema1-ema2)                                              // Zero Lag Exponential
    v15 = hwma(src, len)                                                // Henderson Moving average thanks to  @everget
    ahma = 0.0
    ahma := nz(ahma[1]) + (src - (nz(ahma[1]) + nz(ahma[len])) / 2) / len //Ahrens Moving Average 
    v16 = ahma
    v17 = get_jurik( len, phase, power, src) 
    type=="EMA"?v2 : type=="DEMA"?v3 : type=="TEMA"?v4 : type=="WMA"?v5 : type=="VWMA"?v6 :
     type=="SMMA"?v7 : type=="Hull"?v8 : type=="LSMA"?v9 : type=="ALMA"?v10 : type=="KAMA"?v11 :
     type=="T3"?v13 : type=="ZEMA"?v14 : type=="HWMA"?v15 : type=="AHMA"?v16 : type=="JURIK"?v17 : v1

smoothMA(o, h, l, c, maLoop, type, len) =>
	ma_o = 0.0
	ma_h = 0.0
	ma_l = 0.0
	ma_c = 0.0
	if maLoop == 1
		ma_o := variant(o, type, len)
		ma_h := variant(h, type, len)
		ma_l := variant(l, type, len)
		ma_c := variant(c, type, len)
	if maLoop == 2
		ma_o := variant(variant(o ,type, len),type, len)
		ma_h := variant(variant(h ,type, len),type, len)
		ma_l := variant(variant(l ,type, len),type, len)
		ma_c := variant(variant(c ,type, len),type, len)
	if maLoop == 3
		ma_o := variant(variant(variant(o ,type, len),type, len),type, len)
		ma_h := variant(variant(variant(h ,type, len),type, len),type, len)
		ma_l := variant(variant(variant(l ,type, len),type, len),type, len)
		ma_c := variant(variant(variant(c ,type, len),type, len),type, len)
	if maLoop == 4
		ma_o := variant(variant(variant(variant(o ,type, len),type, len),type, len),type, len)
		ma_h := variant(variant(variant(variant(h ,type, len),type, len),type, len),type, len)
		ma_l := variant(variant(variant(variant(l ,type, len),type, len),type, len),type, len)
		ma_c := variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len)
	if maLoop == 5
		ma_o := variant(variant(variant(variant(variant(o ,type, len),type, len),type, len),type, len),type, len)
		ma_h := variant(variant(variant(variant(variant(h ,type, len),type, len),type, len),type, len),type, len)
		ma_l := variant(variant(variant(variant(variant(l ,type, len),type, len),type, len),type, len),type, len)
		ma_c := variant(variant(variant(variant(variant(c ,type, len),type, len),type, len),type, len),type, len)
    [ma_o, ma_h, ma_l, ma_c]

smoothHA( o, h, l, c ) =>
    hao = 0.0
    hac = ( o + h + l + c ) / 4
    hao := na(hao[1])?(o + c / 2 ):(hao[1] + hac[1])/2
    hah = max(h, max(hao, hac))
    hal = min(l, min(hao, hac))
	[hao, hah, hal, hac]

// ---- Main Ribbon ----
haSmooth   = input(true, title=" Use HA as source ? " )
length     = input(11, title=" MA1 Length", minval=1, maxval=1000)
maLoop     = input(3, title=" Nr. of MA1 Smoothings ", minval=1, maxval=5)
type       = input("EMA", title="MA Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"])
haSmooth2  = input(true, title=" Use HA as source ? " )

// ---- Trend ----
ma_use    = input(true, title=" ----- Use MA Filter ( For Lower Timeframe Swings / Scalps ) ? ----- " )
ma_source = input(defval = close, title = "MA - Source", type = input.source)
ma_length = input(100,title="MA - Length", minval=1 )
ma_type   = input("SMA", title="MA - Type", options=["SMA", "EMA", "DEMA", "TEMA", "WMA", "VWMA", "SMMA", "Hull", "LSMA", "ALMA", "KAMA", "ZEMA", "HWMA", "AHMA", "JURIK", "T3"])
ma_useHA  = input(defval = false, title = "Use HA Candles as Source ?")
ma_rsl    = input(true, title = "Use Rising / Falling Logic ?" )

// ---- BODY SCRIPT ----
[ ha_open, ha_high, ha_low, ha_close ] = smoothHA(open, high, low, close)

_open_ma  = haSmooth ? ha_open : open
_high_ma  = haSmooth ? ha_high : high
_low_ma   = haSmooth ? ha_low : low
_close_ma = haSmooth ? ha_close : close

[ _open, _high, _low, _close ] = smoothMA( _open_ma, _high_ma, _low_ma, _close_ma, maLoop, type, length)
[ ha_open2, ha_high2, ha_low2, ha_close2 ] = smoothHA(_open, _high, _low, _close)

_open_ma2  = haSmooth2 ? ha_open2 : _open
_high_ma2  = haSmooth2 ? ha_high2 : _high
_low_ma2   = haSmooth2 ? ha_low2 : _low
_close_ma2 = haSmooth2 ? ha_close2 : _close

ribbonColor = _close_ma2 > _open_ma2 ? color.lime : color.red
p_open  = plot(_open_ma2,  title="Ribbon - Open",   color=ribbonColor, transp=70)
p_close = plot(_close_ma2, title="Ribbon - Close",  color=ribbonColor, transp=70)
fill(p_open, p_close, color = ribbonColor, transp = 40 )

// ----- FILTER

ma = 0.0
if ma_use == true
    ma := variant( ma_useHA ? ha_close : ma_source, ma_type,  ma_length )

maFilterShort = ma_use ? ma_rsl ? falling(ma,1) : ma_useHA ? ha_close : close < ma : true 
maFilterLong  = ma_use ? ma_rsl ? rising(ma,1) : ma_useHA ? ha_close : close > ma : true 


colorTrend = rising(ma,1) ? color.green : color.red
plot( ma_use ? ma : na, title="MA Trend",  color=colorTrend, transp=80, transp=70, linewidth = 5)

long     = crossover(_close_ma2, _open_ma2 ) and maFilterLong
short    = crossunder(_close_ma2, _open_ma2 ) and maFilterShort
closeAll = cross(_close_ma2, _open_ma2 )

plotshape( short , title="Short", color=color.red,  transp=80, style=shape.triangledown, location=location.abovebar, size=size.small)
plotshape( long ,  title="Long",  color=color.lime, transp=80, style=shape.triangleup,   location=location.belowbar, size=size.small)

//* Backtesting Period Selector | Component *//
//* Source: https://www.tradingview.com/script/eCC1cvxQ-Backtesting-Period-Selector-Component *//
testStartYear   = input(2018, "Backtest Start Year",minval=1980)
testStartMonth  = input(1, "Backtest Start Month",minval=1,maxval=12)
testStartDay    = input(1, "Backtest Start Day",minval=1,maxval=31)
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0)
testStopYear    = 9999 //input(9999, "Backtest Stop Year",minval=1980)
testStopMonth   = 12 // input(12, "Backtest Stop Month",minval=1,maxval=12)
testStopDay     = 31 //input(31, "Backtest Stop Day",minval=1,maxval=31)
testPeriodStop  = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
testPeriod() => time >= testPeriodStart and time <= testPeriodStop ? true : false

if testPeriod() and long
    strategy.entry( "long", strategy.long )

if testPeriod() and short
    strategy.entry( "short", strategy.short )
    
if closeAll
    strategy.close_all( when = closeAll )


Mehr