Bidirektionale Trading-Strategie mit gleitendem Durchschnitt und Crossover


Erstellungsdatum: 2023-12-12 11:26:54 zuletzt geändert: 2023-12-12 11:26:54
Kopie: 1 Klicks: 407
1
konzentrieren Sie sich auf
1212
Anhänger

Bidirektionale Trading-Strategie mit gleitendem Durchschnitt und Crossover

Überblick

Die Strategie ist eine typische Moving-Average-Cross-Strategie, indem sie die Moving-Averages für verschiedene Perioden berechnet und ein Handelssignal ausgibt, wenn der Moving-Average für eine längere Periode auf einem Moving-Average mit einer kürzeren Periode überschritten wird. Die Strategie unterstützt sowohl Overschwemmungen als auch Short-Overs und ermöglicht einen beidseitigen Handel.

Strategieprinzip

Die Strategie basiert auf der Überschneidung verschiedener periodischer Moving Averages, um Trends zu ermitteln und Handelssignale zu erzeugen. Die Strategie verwendet drei Moving Averages mit 8 Perioden, 13 Perioden und 21 Perioden, wobei 8 Perioden als kürzere und 21 Perioden als längere Periodenlinien bezeichnet werden. Mehr als ein Signal wird erzeugt, wenn die 8 Periodenlinie die 21 Periodenlinie durchschreitet.

Bei der Ausführung des jeweiligen Handels wird eine Einschätzungskondition hinzugefügt, um zu verhindern, dass der Handel bei einer Kurvenbewegung eingestellt wird. Es wird nur dann bestellt, wenn der Schlusskurs der K-Linie über dem ((Mehr-Signal)) oder unter dem ((Leicht-Signal)) liegt. Dies kann einige falsche Signale effektiv filtern.

Strategische Vorteile

  1. Die Anwendung des Moving Average-Cross-Prinzips ermöglicht eine effektive Verfolgung von Markttrends.
  2. Es wurden Filterbedingungen eingerichtet, um einige falsche Signale zu filtern und eine Gefängnisstrafe zu vermeiden
  3. Unterstützung für Zwei-Wege-Trading, um auch bei Abwärtstrends zu profitieren
  4. Die Verwendung von Kreuzungen von Moving Averages über Perioden hinweg erlaubt die Erfassung von Wechseln zwischen größeren Ebenen.
  5. Strategie-Logik ist einfach und klar, leicht zu verstehen und zu optimieren

Strategisches Risiko

  1. Bei starken Erschütterungen kann es zu Ausfällen kommen und zu einer Falschmeldung kommen.
  2. Wenn man nicht im Alltag urteilt, verpasst man einige Gelegenheiten.
  3. Die Verzögerung bei der Überprüfung von Kreuzungen über die Zeitspanne kann zu einer kurzfristigen Trendwende führen.
  4. Die Parameter müssen für unterschiedliche Schwankungen ohne Berücksichtigung der Auswirkungen der Aktienpreisfluktuation angepasst werden.
  5. Es gibt keine Stop-Loss-Stopp-Systeme, es besteht das Risiko unbegrenzter Verluste.

Risikolösungen

  1. In Kombination mit anderen Indikatoren, um die Auswirkungen von Erschütterungen zu vermeiden
  2. Reduzieren Sie die Moving Average-Periode und erhöhen Sie die Beurteilungsempfindlichkeit
  3. Einzug in die Stop-Loss-Stopp-Mechanismen, strikte Kontrolle des Handelsrisikos und der Ertragsrücknahme

Optimierungsrichtung

  1. Vergleiche mit anderen technischen Indikatoren wie MACD, KDJ und anderen, um die Wirksamkeit zu verbessern
  2. Testen Sie die Auswirkungen verschiedener Parameter-Einstellungen auf die Gesamtwirkung der Strategie
  3. Anpassungsparameter basierend auf Markttypen und Schwankungen
  4. Optimierung der Berechnung von Moving Averages mit DEMA, ZLEMA und anderen Indikatoren
  5. Hinzufügen von Stop-Loss-Stopp-Logik
  6. Optimierung der Quantifizierungs- und Rückmessungskennzahlen zur Ermittlung der optimalen Parameter

Zusammenfassen

Die Strategie hat eine klare Gesamtkonzeption, um kurz- und langfristige Trendbeziehungen durch einfache und wirksame Kreuzung von Moving Averages zu bestimmen. Die Strategie kann beidseitig gehandelt werden und ist leicht zu verstehen und zu optimieren. Es gibt jedoch einige Risiken, die weiter verbessert werden müssen, wie z. B. die Unfähigkeit, bestimmte Situationen effektiv zu behandeln, und das Fehlen von Stop-Loss-Stop-Kontrollen für das Handelsrisiko.

Strategiequellcode
/*backtest
start: 2022-12-05 00:00:00
end: 2023-12-11 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=3
//Converted to strategy by shawnteoh

strategy(title = "MA Emperor insiliconot Strategy" , overlay=true, pyramiding=1, precision=8)
strat_dir_input = input(title="Strategy Direction", defval="long", options=["long", "short", "all"])
strat_dir_value = strat_dir_input == "long" ? strategy.direction.long : strat_dir_input == "short" ? strategy.direction.short : strategy.direction.all
strategy.risk.allow_entry_in(strat_dir_value)

// Testing start dates
testStartYear = input(2020, "Backtest Start Year")
testStartMonth = input(1, "Backtest Start Month")
testStartDay = input(1, "Backtest Start Day")
testPeriodStart = timestamp(testStartYear,testStartMonth,testStartDay,0,0)
//Stop date if you want to use a specific range of dates
testStopYear = input(2030, "Backtest Stop Year")
testStopMonth = input(12, "Backtest Stop Month")
testStopDay = input(30, "Backtest Stop Day")
testPeriodStop = timestamp(testStopYear,testStopMonth,testStopDay,0,0)
// Order size
orderQty = input(1, "Order quantity", type = float)
// Plot indicator
plotInd = input(false, "Plot indicators?", type = bool)

testPeriod() =>
    time >= testPeriodStart and time <= testPeriodStop ? true : false

haClose = close
haOpen  = open
haHigh  = high
haLow   = low 

haClose := (open + high + low + close) / 4
haOpen  := (nz(haOpen[1]) + nz(haClose[1])) / 2
haHigh  := max(high, max(haOpen, haClose))
haLow   := min(low , min(haOpen, haClose))

ssrc = close
ha = false

o = ha ? haOpen : open
c = ha ? haClose : close
h = ha ? haHigh : high
l = ha ? haLow : low

ssrc := ssrc == close ? ha ? haClose : c : ssrc
ssrc := ssrc == open ? ha ? haOpen : o : ssrc
ssrc := ssrc == high ? ha ? haHigh : h : ssrc
ssrc := ssrc == low ? ha ? haLow : l : ssrc
ssrc := ssrc == hl2 ? ha ? (haHigh + haLow) / 2 : hl2 : ssrc
ssrc := ssrc == hlc3 ? ha ? (haHigh + haLow + haClose) / 3 : hlc3 : ssrc
ssrc := ssrc == ohlc4 ? ha ? (haHigh + haLow + haClose+ haOpen) / 4 : ohlc4 : ssrc

type = input(defval = "EMA", title = "Type", options = ["Butterworth_2Pole", "DEMA", "EMA", "Gaussian", "Geometric_Mean", "LowPass", "McGuinley", "SMA", "Sine_WMA", "Smoothed_MA", "Super_Smoother",  "Triangular_MA", "Wilders", "Zero_Lag"])

len1=input(8, title ="MA 1")
len2=input(13, title = "MA 2") 
len3=input(21, title = "MA 3")
len4=input(55, title = "MA 4")
len5=input(89, title = "MA 5")
lenrib=input(120, title = "IB")
lenrib2=input(121, title = "2B")
lenrib3=input(200, title = "21b")
lenrib4=input(221, title = "22b")

onOff1  = input(defval=true, title="Enable 1")
onOff2  = input(defval=true, title="Enable 2")
onOff3  = input(defval=true, title="Enable 3")
onOff4  = input(defval=false, title="Enable 4")
onOff5  = input(defval=false, title="Enable 5")
onOff6  = input(defval=false, title="Enable 6")
onOff7  = input(defval=false, title="Enable 7")
onOff8  = input(defval=false, title="Enable x")
onOff9  = input(defval=false, title="Enable x")


gauss_poles = input(3, "*** Gaussian poles ***",  minval = 1, maxval = 14) 
linew = 2
shapes = false

 
variant_supersmoother(src,len) =>
    Pi = 2 * asin(1)
    a1 = exp(-1.414* Pi / len)
    b1 = 2*a1*cos(1.414* Pi / len)
    c2 = b1
    c3 = (-a1)*a1
    c1 = 1 - c2 - c3
    v9 = 0.0
    v9 := c1*(src + nz(src[1])) / 2 + c2*nz(v9[1]) + c3*nz(v9[2])
    v9
    
variant_smoothed(src,len) =>
    v5 = 0.0
    v5 := na(v5[1]) ? sma(src, len) : (v5[1] * (len - 1) + src) / len
    v5

variant_zerolagema(src, len) =>
    price = src
    l = (len - 1) / 2
    d = (price + (price - price[l]))
    z = ema(d, len)
    z
    
variant_doubleema(src,len) =>
    v2 = ema(src, len)
    v6 = 2 * v2 - ema(v2, len)
    v6

variant_WiMA(src, length) =>
    MA_s= nz(src)
    MA_s:=(src + nz(MA_s[1] * (length-1)))/length
    MA_s
    
fact(num)=>
    a = 1
    nn = num <= 1 ? 1 : num
    for i = 1 to nn
        a := a * i
    a
    
getPoles(f, Poles, alfa)=>
    filt = f
    sign = 1
    results = 0 + n//tv series spoofing
    for r = 1 to max(min(Poles, n),1)
	    mult  = fact(Poles) / (fact(Poles - r) * fact(r))
	    matPo = pow(1 - alfa, r)
        prev  = nz(filt[r-1],0)
        sum   =  sign * mult * matPo * prev
        results := results + sum
        sign  := sign * -1
    results := results - n
    results
    
variant_gauss(Price, Lag, Poles)=>
    Pi = 2 * asin(1)
    beta = (1 - cos(2 * Pi / Lag)) / ( pow (sqrt(2), 2.0 / Poles) - 1)
    alfa = -beta + sqrt(beta * beta +  2 * beta)
    pre = nz(Price, 0) * pow(alfa, Poles) 
    filter = pre
    result = n > 0 ?  getPoles(nz(filter[1]), Poles, alfa) : 0
    filter := pre + result

variant_mg(src, len)=>
    mg = 0.0
    mg := na(mg[1]) ? ema(src, len) : mg[1] + (src - mg[1]) / (len * pow(src/mg[1], 4))
    mg
    
variant_sinewma(src, length) =>
    PI = 2 * asin(1)
    sum = 0.0
    weightSum = 0.0
    for i = 0 to length - 1
        weight = sin(i * PI / (length + 1))
        sum := sum + nz(src[i]) * weight
        weightSum := weightSum + weight
    sinewma = sum / weightSum
    sinewma
    
variant_geoMean(price, per)=>
    gmean = pow(price, 1.0/per)
    gx = for i = 1 to per-1
        gmean := gmean * pow(price[i], 1.0/per)
        gmean
    ggx = n > per? gx : price    
    ggx


variant_butt2pole(pr, p1)=>
    Pi = 2 * asin(1)
    DTR = Pi / 180    
    a1 = exp(-sqrt(2) * Pi / p1)
    b1 = 2 * a1 * cos(DTR * (sqrt(2) * 180 / p1))
    cf1 = (1 - b1 + a1 * a1) / 4
    cf2 = b1
    cf3 = -a1 * a1
    butt_filt = pr
    butt_filt := cf1 * (pr + 2 * nz(pr[1]) + nz(pr[2])) + cf2 * nz(butt_filt[1]) + cf3 * nz(butt_filt[2])

variant_lowPass(src, len)=>
    LP = src
    sr = src
    a = 2.0 / (1.0 + len)
    LP := (a - 0.25 * a * a) * sr + 0.5 * a * a * nz(sr[1]) - (a - 0.75 * a * a) * nz(sr[2]) + 2.0 * (1.0 - a) * nz(LP[1]) - (1.0 - a) * (1.0 - a) * nz(LP[2])
    LP


variant_sma(src, len) =>
    sum = 0.0
    for i = 0 to len - 1
        sum := sum + src[i] / len
    sum

variant_trima(src, length) =>
    len = ceil((length + 1) * 0.5)
    trima =  sum(sma(src, len), len)/len
    trima
 
 
    
variant(type, src, len) =>
      type=="EMA"   ? ema(src, len) : 
      type=="LowPass" ? variant_lowPass(src, len) :  
      type=="Linreg"  ? linreg(src, len, 0) : 
      type=="Gaussian"  ? variant_gauss(src, len, gauss_poles) :
      type=="Sine_WMA"  ? variant_sinewma(src, len) :
      
      type=="Geometric_Mean"  ? variant_geoMean(src, len) :
      
      type=="Butterworth_2Pole" ? variant_butt2pole(src, len) : 
      type=="Smoothed_MA"  ? variant_smoothed(src, len) :
      type=="Triangular_MA"  ? variant_trima(src, len) : 
      type=="McGuinley" ? variant_mg(src, len) : 
      type=="DEMA"  ? variant_doubleema(src, len):  
      type=="Super_Smoother"  ? variant_supersmoother(src, len) : 
      type=="Zero_Lag"  ? variant_zerolagema(src, len) :  
      type=="Wilders"? variant_WiMA(src, len) : variant_sma(src, len)


c1=#44E2D6
c2=#DDD10D
c3=#0AA368
c4=#E0670E
c5=#AB40B2

cRed = #F93A00


ma1 =  variant(type, ssrc, len1)
ma2 =  variant(type, ssrc, len2)
ma3 =  variant(type, ssrc, len3)
ma4 =  variant(type, ssrc, len4)
ma5 =  variant(type, ssrc, len5)
ma6 =  variant(type, ssrc, lenrib)
ma7 =  variant(type, ssrc, lenrib2)
ma8 =  variant(type, ssrc, lenrib3)
ma9 =  variant(type, ssrc, lenrib4)

col1 = c1
col2 = c2
col3 = c3
col4 = c4
col5 = c5

p1 = plot(onOff1 ? ma1 : na, title = "MA 1",  color = col1,  linewidth = linew, style = linebr)
p2 = plot(onOff2 ? ma2 : na, title = "MA 2",  color = col2,  linewidth = linew, style = linebr)
p3 = plot(onOff3 ? ma3 : na, title = "MA 3",  color = col3,  linewidth = linew, style = linebr)
p4 = plot(onOff4 ? ma4 : na, title = "MA 4",  color = col4,  linewidth = linew, style = linebr)
p5 = plot(onOff5 ? ma5 : na, title = "MA 5",  color = col5,  linewidth = linew, style = linebr)
p6 = plot(onOff6 ? ma6 : na, title = "MA 6",  color = col5,  linewidth = linew, style = linebr)
p7 = plot(onOff7 ? ma7 : na, title = "MA 7",  color = col5,  linewidth = linew, style = linebr)
p8 = plot(onOff8 ? ma8 : na, title = "MA 8",  color = col5,  linewidth = linew, style = linebr)
p9 = plot(onOff9 ? ma9 : na, title = "MA 9",  color = col5,  linewidth = linew, style = linebr)

longCond = crossover(ma2, ma3)
if longCond and testPeriod()
    strategy.entry("buy", strategy.long, qty = orderQty, when = open > ma2[1])

shortCond = crossunder(ma2, ma3)
if shortCond and testPeriod()
    strategy.entry("sell", strategy.short, qty = orderQty, when = open < ma2[1])

plotshape(series=plotInd? longCond : na, title="P", style=shape.triangleup, location=location.belowbar, color=green, text="P", size=size.small)   
plotshape(series=plotInd? shortCond : na, title="N", style=shape.triangledown, location=location.abovebar, color=red, text="N", size=size.small)