Die Ressourcen sind geladen. Beförderung...

Strategie für RSI/MFI-Impulsindikatoren auf der Grundlage der Dow-Theorie

Schriftsteller:ChaoZhang, Datum: 2023-12-12 17:54:58
Tags:

img

Übersicht

Diese Strategie verwendet den Relative Strength Index (RSI) oder den Money Flow Index (MFI), um zu beurteilen, ob der Markt Bullen oder Bären ist, kombiniert mit dem Bullen-Bären-Koeffizienten aus der Dow Theory, um die angepasste Wahrscheinlichkeitsverteilung zu berechnen.

Strategieprinzip

  1. Berechnung des RSI oder des MFI zur Beurteilung des aktuellen Marktzustands (Bull oder Bear)
  2. Berechnen Sie den Dow-Theorie-Bull-Bear-Koeffizienten, um die Korrelation zwischen aktuellem Preis und Volumen widerzuspiegeln
  3. Anpassung der Wahrscheinlichkeitsverteilung RSI/MFI zur Bestimmung der genauen langen/kurzen Verteilung
  4. Entscheiden Sie, ob Sie eine Eingabe auf der Grundlage der aktuellen SessionId und der Wahrscheinlichkeit vornehmen
  5. Stopp-Loss bei Gewinnentnahme oder seitlichem Markt

Analyse der Vorteile

  1. Eine genauere Beurteilung des Markttyps in Kombination mit der Dow-Theorie
  2. Betrachten Sie seitliche Faktor zu vermeiden, blind Eintritt
  3. Hohe Risiko-Rendite-Ratio und geringe Auslastung

Risikoanalyse

  1. Bei falschen Parametern können mehrere Fehleinschätzungen auftreten
  2. Es bedarf ausreichender historischer Daten, um
  3. Einfache Stop-Loss-Logik kann nicht für spezielle Marktsituationen optimiert werden

Optimierungsrichtung

  1. Überlegen Sie, mehr Indikatoren zu kombinieren, um die Marktsitzung zu beurteilen
  2. Hinzufügen einer strengeren Stop-Loss-Logik, die auf Volatilität, historischen Daten usw. basiert.
  3. Probieren Sie maschinelles Lernen usw. aus, um bessere Parameter zu bestimmen.

Zusammenfassung

Das Gesamt-Backtest-Ergebnis dieser Strategie ist gut und hat einen gewissen praktischen Wert. Aber weitere Tests und Anpassungen sind noch erforderlich, insbesondere für die Stop-Loss-Logik.


/*backtest
start: 2022-12-05 00:00:00
end: 2023-03-11 00:00:00
period: 1d
basePeriod: 1h
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4

//MIT License

//Copyright (c) 2019 user-Noldo

//Permission is hereby granted, free of charge, to any person obtaining a copy
//of this software and associated documentation files (the "Software"), to deal
//in the Software without restriction, including without limitation the rights
//to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
//copies of the Software, and to permit persons to whom the Software is
//furnished to do so, subject to the following conditions:

//The above copyright notice and this permission notice shall be included in all
//copies or substantial portions of the Software.

//THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
//IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
//FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
//AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
//LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
//OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
//SOFTWARE.


strategy("Dow Factor RSI/MFI and Dependent Variable Odd Generator Strategy",shorttitle = "Dow_Factor RSI/MFI & DVOG Strategy", overlay = false, default_qty_type=strategy.percent_of_equity,commission_type=strategy.commission.percent, commission_value=0.125, default_qty_value=100 )
src = close 
lights          = input(title="Barcolor I / 0 ? ", options=["ON", "OFF"], defval="OFF")
method          = input(title="METHOD", options=["MFI", "RSI"], defval="RSI")

length = input(5, minval=2,maxval = 14, title = "Strategy Period")

// Essential Functions 

// Function Sum 

f_sum(_src , _length) => 

    _output  = 0.00 
    
    _length_adjusted = _length < 1 ? 1 : _length
    
    for i = 0 to _length_adjusted-1
        _output := _output + _src[i]


f_sma(_src, _length)=>
    _length_adjusted = _length < 1 ? 1 : _length
    float _sum = 0
    for _i = 0 to (_length_adjusted - 1)
        _sum := _sum + _src[_i]
    _return = _sum / _length_adjusted
   

// Unlocked Exponential Moving Average Function

f_ema(_src, _length)=>
    _length_adjusted = _length < 1 ? 1 : _length
    _multiplier = 2 / (_length_adjusted + 1)
    _return  = 0.00
    _return := na(_return[1]) ? _src : ((_src - _return[1]) * _multiplier) + _return[1]


// Function Standard Deviation

f_stdev(_src,_length) =>

    float _output = na 
    _length_adjusted = _length < 2 ? 2 : _length
    _avg  = f_ema(_src , _length_adjusted)
    evar  = (_src - _avg) * (_src - _avg)
    evar2 = ((f_sum(evar,_length_adjusted))/_length_adjusted)
    
    _output := sqrt(evar2)


// Linear Regression Channels : 

f_pearson_corr(_src1, _src2, _length) =>

    _length_adjusted = _length < 2 ? 2 : _length
    _ema1 = f_ema(_src1, _length_adjusted)
    _ema2 = f_ema(_src2, _length_adjusted)
    isum = 0.0
    for i = 0 to _length_adjusted - 1
        isum := isum + (_src1[i] - _ema1) * (_src2[i] - _ema2)
    isumsq1 = 0.0
    for i = 0 to _length_adjusted - 1
        isumsq1 := isumsq1 + pow(_src1[i] - _ema1, 2)
    isumsq2 = 0.0
    for i = 0 to _length_adjusted - 1
        isumsq2 := isumsq2 + pow(_src2[i] - _ema2, 2)
    pcc = isum/(sqrt(isumsq1*isumsq2))
    pcc


// Dow Theory Cycles 


dow_coeff = f_pearson_corr(src,volume,length)

dow_bull_factor = (1 + dow_coeff)
dow_bear_factor = (1 - dow_coeff)


// MONEY FLOW INDEX =====> FOR BULL OR BEAR MARKET (CLOSE)


upper_s = f_sum(volume * (change(src) <= 0 ? 0 : src), length)
lower_s = f_sum(volume * (change(src) >= 0 ? 0 : src), length)

_market_index = rsi(upper_s, lower_s)


// RSI (Close)

// Function RMA 

f_rma(_src, _length) =>
    _length_adjusted = _length < 1 ? 1 : _length
    alpha = _length_adjusted
    sum = 0.0
    sum := (_src + (alpha - 1) * nz(sum[1])) / alpha


// Function Relative Strength Index (RSI)

f_rsi(_src, _length) => 

    _output = 0.00 
    _length_adjusted = _length < 0 ? 0 : _length

    u = _length_adjusted < 1 ? max(_src - _src[_length_adjusted], 0) : max(_src - _src[1] , 0) // upward change
    d = _length_adjusted < 1 ? max(_src[_length_adjusted] - _src, 0) : max(_src[1] - _src , 0) // downward change
    rs = f_rma(u, _length) / f_rma(d, _length)
    res = 100 - 100 / (1 + rs)
    res


_rsi = f_rsi(src, length)


// Switchable Method Codes 

_method = 0.00 


if (method=="MFI")

    _method:= _market_index 
    
if (method=="RSI")

    _method:= _rsi   
    


// Conditions  

_bull_gross  = (_method )
_bear_gross  = (100 - _method )

_price_stagnant = ((_bull_gross * _bear_gross ) / 100)
_price_bull     =  (_bull_gross - _price_stagnant) 
_price_bear     =  (_bear_gross - _price_stagnant) 


_coeff_price = (_price_stagnant + _price_bull + _price_bear) / 100 

_bull     = _price_bull / _coeff_price 
_bear     = _price_bear / _coeff_price 
_stagnant = _price_stagnant / _coeff_price



// Market Types with Dow Factor

_temp_bull_gross     =  _bull     * dow_bull_factor       

_temp_bear_gross     =  _bear     * dow_bear_factor 


// Addition : Odds with Stagnant Market 


_coeff_normal = (_temp_bull_gross + _temp_bear_gross) / 100


// ********* OUR RSI / MFI VALUE ***********

_value        = _temp_bull_gross / _coeff_normal


// Temporary Pure Odds 

_temp_stagnant = ((_temp_bull_gross * _temp_bear_gross) / 100)
_temp_bull     = _temp_bull_gross - _temp_stagnant 
_temp_bear     = _temp_bear_gross - _temp_stagnant 


// Now we ll do venn scheme (Probability Cluster)
// Pure Bull + Pure Bear + Pure Stagnant = 100 
// Markets will get their share in the Probability Cluster 

 
_coeff = (_temp_stagnant + _temp_bull + _temp_bear) / 100

_odd_bull     = _temp_bull / _coeff
_odd_bear     = _temp_bear / _coeff
_odd_stagnant = _temp_stagnant / _coeff


_positive_condition     = crossover (_value,50)
_negative_condition     = crossunder(_value,50)
_stationary_condition   = ((_odd_stagnant > _odd_bull ) and (_odd_stagnant > _odd_bear))


// Strategy 

closePosition = _stationary_condition


if (_positive_condition)
    strategy.entry("Long", strategy.long, comment="Long")
    
strategy.close(id = "Long", when = closePosition )

if (_negative_condition)
    strategy.entry("Short", strategy.short, comment="Short")
    
strategy.close(id = "Short", when = closePosition )    


// Plot Data

// Plotage 

oversold   = input(25 , type = input.integer , title = "Oversold")   
overbought = input(75 , type = input.integer , title = "Overbought") 

zero    = 0 
hundred = 100
limit   = 50

// Plot Data 

stagline       = hline(limit      , color=color.new(color.white,0)   , linewidth=1, editable=false)
zeroline       = hline(zero       , color=color.new(color.silver,100), linewidth=0, editable=false)
hundredline    = hline(hundred    , color=color.new(color.silver,100), linewidth=0, editable=false)
oversoldline   = hline(oversold   , color=color.new(color.silver,100), linewidth=0, editable=false)
overboughtline = hline(overbought , color=color.new(color.silver,100), linewidth=0, editable=false)

// Filling Borders

fill(zeroline       , oversoldline   , color=color.maroon  , transp=88 , title = "Oversold Area")
fill(oversoldline   , stagline       , color=color.red     , transp=80 , title = "Bear Market")
fill(stagline       , overboughtline , color=color.green   , transp=80 , title = "Bull Market")
fill(overboughtline , hundredline    , color=color.teal    , transp=88 , title = "Overbought Market")


// Plot DOW Factor Methods

plot(_value, color = #F4C430 , linewidth = 2 , title = "DOW F-RSI" , transp = 0)

// Plot border lines

plot(oversold  ,style = plot.style_line,color = color.new(color.maroon,30),linewidth = 1)
plot(overbought,style = plot.style_line,color = color.new(color.teal,30)  ,linewidth = 1)


plot(zero     ,style = plot.style_line , color = color.new(color.silver,30) , linewidth = 1 ,editable = false)
plot(hundred  ,style = plot.style_line , color = color.new(color.silver,30) , linewidth = 1 ,editable = false)


// Switchable Barcolor ( On / Off)

_lights = 0.00 


if (lights=="ON")

    _lights:= 1.00
    
if (lights=="OFF")

    _lights:= -1.00   


bcolor_on  = _lights ==  1.00
bcolor_off = _lights == -1.00


barcolor((_positive_condition and bcolor_on)    ? color.green : (_negative_condition and bcolor_on) ? color.red : 
          (_stationary_condition and bcolor_on) ? color.yellow : na)


// Alerts 

alertcondition(_positive_condition , title='Strong Buy !', message='Strong Buy Signal ')
alertcondition(crossover(_value,overbought) , title='Gradual Buy', message='Gradual Buy Signal')
alertcondition(crossover(_value,oversold)   , title='Gradual Buy', message='Gradual Buy Signal')

alertcondition(crossunder(_value,overbought) , title='Gradual Sell', message='Gradual Sell Signal')
alertcondition(crossunder(_value,oversold)   , title='Gradual Sell', message='Gradual Sell Signal')

alertcondition(_negative_condition , title='Strong Sell !', message='Strong Sell Signal ')




Mehr