Volumen-Preis-Balance-Gleitende-Durchschnitts-Strategie


Erstellungsdatum: 2023-12-13 17:58:11 zuletzt geändert: 2023-12-13 17:58:11
Kopie: 0 Klicks: 405
1
konzentrieren Sie sich auf
1141
Anhänger

Volumen-Preis-Balance-Gleitende-Durchschnitts-Strategie

Überblick

Diese Strategie ist eine verbesserte Version des klassischen MACD-Indikators, der 11 verschiedene Arten von Moving Averages verwendet, um die Kurskurve zu glätten und die Fehlsignale zu reduzieren. Der Indikator besteht aus einer schnellen, einer langsamen und einer Säule.

Strategieprinzip

  1. Berechnung des schnellen Moving Averages MA12 Erlaubt die Auswahl von 11 verschiedenen Moving Average-Berechnungsmethoden, wobei die Variation Rate Line VAR als Default verwendet wird.

  2. Berechnung eines langsamen Moving Averages MA26 Ermöglicht die Auswahl von 11 verschiedenen Moving Average-Berechnungsmethoden, wobei die VAR-Rate-Linie als Standard verwendet wird.

  3. Berechnen Sie die Schnell-Linien-Differenz SRC2 = MA12 - MA26。

  4. Für die Berechnung der SRC2-Triggerlinie MATR wird ein Moving Average mit einer Länge von 9 verwendet, wobei 11 Berechnungsmethoden zur Auswahl stehen, wobei die Variablen-Rate-Linie VAR als Default verwendet wird.

  5. Berechnen Sie die MACD-Säule HIST = SRC2 - MATR. Die Säule erzeugt ein Kaufsignal, wenn sie sich von einer negativen zu einer positiven Zahl verändert, und ein Verkaufsignal, wenn sie sich von einer positiven zu einer negativen Zahl verändert.

Analyse der Stärken

  1. 11 verschiedene Moving Averages zur Berechnung von Schnell- und Triggerlinien sind verfügbar, was die Verzögerung der üblichen Moving Averages erheblich reduziert und die Genauigkeit der Vorhersage erhöht.

  2. Die Variation Rate Line (VAR) kann die Gewichtung des Moving Averages automatisch anpassen, um besser auf Marktveränderungen reagieren zu können.

  3. Der doppelte Moving Average, der den Buffer-Zonen-Prinzip verwendet, filtert effektiv Marktlärm.

  4. Die MACD-Säulen als Trigger überwinden das Verzögerungsproblem, das bei der Kreuzung herkömmlicher MACD-Schnell-Lang-Linien auftritt.

Risikoanalyse

  1. Die MACD-Indikatoren haben eine schwache Beurteilung von Trendschwankungen.

  2. Der bewegliche Durchschnitt selbst erzeugt eine gewisse Verzögerung. Die VAR-Wechselrate-Linie kann teilweise erleichtert, aber nicht vollständig gelöst werden.

  3. Die Fehlerakkumulation führt zu falschen Signalen oder zu fehlenden Signalen.

Optimierungsrichtung

  1. Die Methode zur Berechnung von Moving Averages, die auf spezifische Marktsituationen abgestimmt sind, wird ausgewählt. Die Kombination von Rückmeldungsergebnissen wird mit einer relativ genauen Auswahl kombiniert.

  2. Optimieren Sie die Längeparameter für Schnell- und Triggerlinien, um die optimale Kombination von Parametern zu finden, um Fehlsignale zu reduzieren.

  3. Hinzufügen von zusätzlichen Indikatoren, um die Kauf- und Verkaufssignale zu bestätigen, können Indikatoren wie RSI, Bollinger Bands und andere berücksichtigt werden.

Zusammenfassen

Diese Strategie ist eine optimierte Version des klassischen MACD-Indikators. Die Berechnung des MACD mit Hilfe von mehreren Moving Average-Modellen mit schnellen und langen Linien und Pylonlinien erhöht die Praktikabilität des Indikators erheblich. Es gibt jedoch einige Einschränkungen, die ständig optimiert werden müssen, um den maximalen Nutzen im Handel zu erzielen.

Strategiequellcode
/*backtest
start: 2023-11-12 00:00:00
end: 2023-12-12 00:00:00
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

//@version=4
// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © KivancOzbilgic


//developer: Gerald Appel
//author: @kivancozbilgic

strategy("MACD ReLoaded","MACDRe", overlay=true)
src = input(close, title="Source")
length=input(12, "Short Moving Average Length", minval=1)
length1=input(26, "Long Moving Average Length", minval=1)
length2=input(9, "Trigger Length", minval=1)
T3a1 = input(0.7, "TILLSON T3 Volume Factor", step=0.1)
barcoloring = input(title="Bar Coloring On/Off ?", type=input.bool, defval=true)

mav = input(title="Moving Average Type", defval="VAR", options=["SMA", "EMA", "WMA", "DEMA", "TMA", "VAR", "WWMA", "ZLEMA", "TSF", "HULL", "TILL"])
Var_Func(src,length)=>
    valpha=2/(length+1)
    vud1=src>src[1] ? src-src[1] : 0
    vdd1=src<src[1] ? src[1]-src : 0
    vUD=sum(vud1,9)
    vDD=sum(vdd1,9)
    vCMO=nz((vUD-vDD)/(vUD+vDD))
    VAR=0.0
    VAR:=nz(valpha*abs(vCMO)*src)+(1-valpha*abs(vCMO))*nz(VAR[1])
VAR=Var_Func(src,length)
DEMA = ( 2 * ema(src,length)) - (ema(ema(src,length),length) )
Wwma_Func(src,length)=>
    wwalpha = 1/ length
    WWMA = 0.0
    WWMA := wwalpha*src + (1-wwalpha)*nz(WWMA[1])
WWMA=Wwma_Func(src,length)
Zlema_Func(src,length)=>
    zxLag = length/2==round(length/2) ? length/2 : (length - 1) / 2
    zxEMAData = (src + (src - src[zxLag]))
    ZLEMA = ema(zxEMAData, length)
ZLEMA=Zlema_Func(src,length)
Tsf_Func(src,length)=>
    lrc = linreg(src, length, 0)
    lrc1 = linreg(src,length,1)
    lrs = (lrc-lrc1)
    TSF = linreg(src, length, 0)+lrs
TSF=Tsf_Func(src,length)
HMA = wma(2 * wma(src, length / 2) - wma(src, length), round(sqrt(length)))
T3e1=ema(src, length)
T3e2=ema(T3e1,length)
T3e3=ema(T3e2,length)
T3e4=ema(T3e3,length)
T3e5=ema(T3e4,length)
T3e6=ema(T3e5,length)
T3c1=-T3a1*T3a1*T3a1
T3c2=3*T3a1*T3a1+3*T3a1*T3a1*T3a1
T3c3=-6*T3a1*T3a1-3*T3a1-3*T3a1*T3a1*T3a1
T3c4=1+3*T3a1+T3a1*T3a1*T3a1+3*T3a1*T3a1
T3=T3c1*T3e6+T3c2*T3e5+T3c3*T3e4+T3c4*T3e3


getMA(src, length) =>
    ma = 0.0
    if mav == "SMA"
        ma := sma(src, length)
        ma

    if mav == "EMA"
        ma := ema(src, length)
        ma

    if mav == "WMA"
        ma := wma(src, length)
        ma

    if mav == "DEMA"
        ma := DEMA
        ma

    if mav == "TMA"
        ma := sma(sma(src, ceil(length / 2)), floor(length / 2) + 1)
        ma

    if mav == "VAR"
        ma := VAR
        ma

    if mav == "WWMA"
        ma := WWMA
        ma

    if mav == "ZLEMA"
        ma := ZLEMA
        ma

    if mav == "TSF"
        ma := TSF
        ma

    if mav == "HULL"
        ma := HMA
        ma

    if mav == "TILL"
        ma := T3
        ma
    ma
    
MA12=getMA(src, length)


Var_Func1(src,length1)=>
    valpha1=2/(length1+1)
    vud11=src>src[1] ? src-src[1] : 0
    vdd11=src<src[1] ? src[1]-src : 0
    vUD1=sum(vud11,9)
    vDD1=sum(vdd11,9)
    vCMO1=nz((vUD1-vDD1)/(vUD1+vDD1))
    VAR1=0.0
    VAR1:=nz(valpha1*abs(vCMO1)*src)+(1-valpha1*abs(vCMO1))*nz(VAR1[1])
VAR1=Var_Func1(src,length1)
DEMA1 = ( 2 * ema(src,length1)) - (ema(ema(src,length1),length1) )
Wwma_Func1(src,length1)=>
    wwalpha1 = 1/ length1
    WWMA1 = 0.0
    WWMA1 := wwalpha1*src + (1-wwalpha1)*nz(WWMA1[1])
WWMA1=Wwma_Func1(src,length1)
Zlema_Func1(src,length1)=>
    zxLag1 = length1/2==round(length1/2) ? length1/2 : (length1 - 1) / 2
    zxEMAData1 = (src + (src - src[zxLag1]))
    ZLEMA1 = ema(zxEMAData1, length1)
ZLEMA1=Zlema_Func1(src,length1)
Tsf_Func1(src,length1)=>
    lrc1 = linreg(src, length1, 0)
    lrc11 = linreg(src,length1,1)
    lrs1 = (lrc1-lrc11)
    TSF1 = linreg(src, length1, 0)+lrs1
TSF1=Tsf_Func1(src,length1)
HMA1 = wma(2 * wma(src, length1 / 2) - wma(src, length1), round(sqrt(length1)))
T3e11=ema(src, length1)
T3e21=ema(T3e11,length1)
T3e31=ema(T3e21,length1)
T3e41=ema(T3e31,length1)
T3e51=ema(T3e41,length1)
T3e61=ema(T3e51,length1)
T3c11=-T3a1*T3a1*T3a1
T3c21=3*T3a1*T3a1+3*T3a1*T3a1*T3a1
T3c31=-6*T3a1*T3a1-3*T3a1-3*T3a1*T3a1*T3a1
T3c41=1+3*T3a1+T3a1*T3a1*T3a1+3*T3a1*T3a1
T31=T3c11*T3e61+T3c21*T3e51+T3c31*T3e41+T3c41*T3e31


getMA1(src, length1) =>
    ma1 = 0.0
    if mav == "SMA"
        ma1 := sma(src, length1)
        ma1

    if mav == "EMA"
        ma1 := ema(src, length1)
        ma1

    if mav == "WMA"
        ma1 := wma(src, length1)
        ma1

    if mav == "DEMA"
        ma1 := DEMA1
        ma1

    if mav == "TMA"
        ma1 := sma(sma(src, ceil(length1 / 2)), floor(length1 / 2) + 1)
        ma1

    if mav == "VAR"
        ma1 := VAR1
        ma1

    if mav == "WWMA"
        ma1:= WWMA1
        ma1

    if mav == "ZLEMA"
        ma1 := ZLEMA1
        ma1

    if mav == "TSF"
        ma1 := TSF1
        ma1

    if mav == "HULL"
        ma1 := HMA1
        ma1

    if mav == "TILL"
        ma1 := T31
        ma1
    ma1
    
MA26=getMA1(src, length1)


src2=MA12-MA26

Var_Func2(src2,length2)=>
    valpha2=2/(length2+1)
    vud12=src2>src2[1] ? src2-src2[1] : 0
    vdd12=src2<src2[1] ? src2[1]-src2 : 0
    vUD2=sum(vud12,9)
    vDD2=sum(vdd12,9)
    vCMO2=nz((vUD2-vDD2)/(vUD2+vDD2))
    VAR2=0.0
    VAR2:=nz(valpha2*abs(vCMO2)*src2)+(1-valpha2*abs(vCMO2))*nz(VAR2[1])
VAR2=Var_Func2(src2,length2)
DEMA2 = ( 2 * ema(src2,length2)) - (ema(ema(src2,length2),length2) )
Wwma_Func2(src2,length2)=>
    wwalpha2 = 1/ length2
    WWMA2 = 0.0
    WWMA2 := wwalpha2*src2 + (1-wwalpha2)*nz(WWMA2[1])
WWMA2=Wwma_Func2(src2,length2)
Zlema_Func2(src2,length2)=>
    zxLag2 = length2/2==round(length2/2) ? length2/2 : (length2 - 1) / 2
    zxEMAData2 = (src2 + (src2 - src2[zxLag2]))
    ZLEMA2 = ema(zxEMAData2, length2)
ZLEMA2=Zlema_Func2(src2,length2)
Tsf_Func2(src2,length2)=>
    lrc2 = linreg(src2, length2, 0)
    lrc12 = linreg(src2,length2,1)
    lrs2 = (lrc2-lrc12)
    TSF2 = linreg(src2, length2, 0)+lrs2
TSF2=Tsf_Func2(src2,length2)
HMA2 = wma(2 * wma(src2, length2 / 2) - wma(src2, length2), round(sqrt(length2)))
T3e12=ema(src2, length2)
T3e22=ema(T3e12,length2)
T3e32=ema(T3e22,length2)
T3e42=ema(T3e32,length2)
T3e52=ema(T3e42,length2)
T3e62=ema(T3e52,length2)
T3c12=-T3a1*T3a1*T3a1
T3c22=3*T3a1*T3a1+3*T3a1*T3a1*T3a1
T3c32=-6*T3a1*T3a1-3*T3a1-3*T3a1*T3a1*T3a1
T3c42=1+3*T3a1+T3a1*T3a1*T3a1+3*T3a1*T3a1
T32=T3c12*T3e62+T3c22*T3e52+T3c32*T3e42+T3c42*T3e32


getMA2(src2, length2) =>
    ma2 = 0.0
    if mav == "SMA"
        ma2 := sma(src2, length2)
        ma2

    if mav == "EMA"
        ma2 := ema(src2, length2)
        ma2

    if mav == "WMA"
        ma2 := wma(src2, length2)
        ma2

    if mav == "DEMA"
        ma2 := DEMA2
        ma2

    if mav == "TMA"
        ma2 := sma(sma(src2, ceil(length2 / 2)), floor(length2 / 2) + 1)
        ma2

    if mav == "VAR"
        ma2 := VAR2
        ma2

    if mav == "WWMA"
        ma2 := WWMA2
        ma2

    if mav == "ZLEMA"
        ma2 := ZLEMA2
        ma2

    if mav == "TSF"
        ma2 := TSF2
        ma2

    if mav == "HULL"
        ma2 := HMA2
        ma2

    if mav == "TILL"
        ma2 := T32
        ma2
    ma2


MATR=getMA2(MA12-MA26, length2)
hist = src2 - MATR

FromMonth = input(defval = 9, title = "From Month", minval = 1, maxval = 12)
FromDay   = input(defval = 1, title = "From Day", minval = 1, maxval = 31)
FromYear  = input(defval = 2018, title = "From Year", minval = 999)
ToMonth   = input(defval = 1, title = "To Month", minval = 1, maxval = 12)
ToDay     = input(defval = 1, title = "To Day", minval = 1, maxval = 31)
ToYear    = input(defval = 9999, title = "To Year", minval = 999)
start     = timestamp(FromYear, FromMonth, FromDay, 00, 00)  
finish    = timestamp(ToYear, ToMonth, ToDay, 23, 59)       
window()  => time >= start and time <= finish ? true : false
buySignal = crossover(hist, 0)
if (crossover(hist, 0))
	strategy.entry("MacdLong", strategy.long, comment="MacdLong")
sellSignal = crossunder(hist, 0)
if (crossunder(hist, 0))
	strategy.entry("MacdShort", strategy.short, comment="MacdShort")
buy1= barssince(buySignal)
sell1 = barssince(sellSignal)
color1 = buy1[1] < sell1[1] ? color.green : buy1[1] > sell1[1] ? color.red : na
barcolor(barcoloring ? color1 : na)


//plot(strategy.equity, title="equity", color=color.red, linewidth=2, style=plot.style_areabr)