Die Ressourcen sind geladen. Beförderung...

Mehrzeitrahmen gleitender Durchschnitt in Kombination mit Handelszeiten Quantitative Handelsstrategie

Schriftsteller:ChaoZhang, Datum: 2024-01-12 11:50:37
Tags:

img

Übersicht

Diese Strategie nutzt mehrere gleitende Durchschnittsindikatoren und kombiniert Ein- und Ausstiegszeiten basierend auf den Handelszeiten, um einen quantitativen Handel umzusetzen.

Strategie Logik

Diese Strategie beinhaltet 9 Arten von gleitenden Durchschnitten, darunter SMA, EMA, WMA usw. Für den langen Eintritt überschreitet der Schlusskurs den ausgewählten gleitenden Durchschnitt, während der vorherige Schlusskurs unter dem gleitenden Durchschnitt lag. Für den kurzen Eintritt überschreitet der Schlusskurs den gleitenden Durchschnitt, während der vorherige Schlusskurs oberhalb lag. Alle Trades werden nur am Montag geöffnet eingegeben.

Analyse der Vorteile

Diese Strategie kombiniert die Essenz von mehreren gleitenden Durchschnitten und Benutzer können verschiedene Parameter basierend auf unterschiedlichen Marktbedingungen auswählen. Sie tritt nur ein, wenn ein Trend bestätigt wird, um Whipsaws zu vermeiden. Außerdem beschränkt sie die Einträge nur auf Montag und geht am Sonntag mit Stop-Loss / Take-Profit ab, was maximale Trades pro Woche begrenzt und das Handelsrisiko kontrolliert.

Risikoanalyse

Die Strategie stützt sich hauptsächlich auf gleitende Durchschnitte, um den Trend zu bestimmen, und besteht somit das Risiko, in Umkehrungen zu geraten.

Um diesen Risiken entgegenzuwirken, könnten dynamische Durchschnittsparameter zur Verkürzung der Länge während der Perioden verwendet werden.

Optimierungsrichtlinien

Die Strategie kann wie folgt verbessert werden:

  1. Hinzufügen von adaptiven Stop-Loss-/Take-Profit-Algorithmen zur dynamischen Anpassung der Level.

  2. Einbeziehung von Modellen für maschinelles Lernen zur besseren Beurteilung von Trends in unruhigen Märkten.

  3. Verfeinern Sie die Ein- und Ausstiegslogik, um mehr Handelsmöglichkeiten zu erlangen.

Zusammenfassung

Diese Strategie kombiniert mehrere gleitende Durchschnittsindikatoren, um die Trendrichtung zu bestimmen, und begrenzt maximale wöchentliche Trades mit Montagseingangs- und Sonntagsausgangsregeln.


/*backtest
start: 2023-12-01 00:00:00
end: 2023-12-31 23:59:59
period: 1h
basePeriod: 15m
exchanges: [{"eid":"Futures_Binance","currency":"BTC_USDT"}]
*/

// This source code is subject to the terms of the Mozilla Public License 2.0 at https://mozilla.org/MPL/2.0/
// © exlux99

//@version=5
strategy('Time MA strategy ', overlay=true)

longEntry = input.bool(true, group="Type of Entries")
shortEntry = input.bool(false, group="Type of Entries")


//==========DEMA
getDEMA(src, len) =>
    dema = 2 * ta.ema(src, len) - ta.ema(ta.ema(src, len), len)
    dema
//==========HMA
getHULLMA(src, len) =>
    hullma = ta.wma(2 * ta.wma(src, len / 2) - ta.wma(src, len), math.round(math.sqrt(len)))
    hullma
//==========KAMA
getKAMA(src, len, k1, k2) =>
    change = math.abs(ta.change(src, len))
    volatility = math.sum(math.abs(ta.change(src)), len)
    efficiency_ratio = volatility != 0 ? change / volatility : 0
    kama = 0.0
    fast = 2 / (k1 + 1)
    slow = 2 / (k2 + 1)
    smooth_const = math.pow(efficiency_ratio * (fast - slow) + slow, 2)
    kama := nz(kama[1]) + smooth_const * (src - nz(kama[1]))
    kama
//==========TEMA
getTEMA(src, len) =>
    e = ta.ema(src, len)
    tema = 3 * (e - ta.ema(e, len)) + ta.ema(ta.ema(e, len), len)
    tema
//==========ZLEMA
getZLEMA(src, len) =>
    zlemalag_1 = (len - 1) / 2
    zlemadata_1 = src + src - src[zlemalag_1]
    zlema = ta.ema(zlemadata_1, len)
    zlema
//==========FRAMA
getFRAMA(src, len) =>
    Price = src
    N = len
    if N % 2 != 0
        N := N + 1
        N
    N1 = 0.0
    N2 = 0.0
    N3 = 0.0
    HH = 0.0
    LL = 0.0
    Dimen = 0.0
    alpha = 0.0
    Filt = 0.0
    N3 := (ta.highest(N) - ta.lowest(N)) / N
    HH := ta.highest(N / 2 - 1)
    LL := ta.lowest(N / 2 - 1)
    N1 := (HH - LL) / (N / 2)
    HH := high[N / 2]
    LL := low[N / 2]
    for i = N / 2 to N - 1 by 1
        if high[i] > HH
            HH := high[i]
            HH
        if low[i] < LL
            LL := low[i]
            LL
    N2 := (HH - LL) / (N / 2)
    if N1 > 0 and N2 > 0 and N3 > 0
        Dimen := (math.log(N1 + N2) - math.log(N3)) / math.log(2)
        Dimen
    alpha := math.exp(-4.6 * (Dimen - 1))
    if alpha < .01
        alpha := .01
        alpha
    if alpha > 1
        alpha := 1
        alpha
    Filt := alpha * Price + (1 - alpha) * nz(Filt[1], 1)
    if bar_index < N + 1
        Filt := Price
        Filt
    Filt
//==========VIDYA
getVIDYA(src, len) =>
    mom = ta.change(src)
    upSum = math.sum(math.max(mom, 0), len)
    downSum = math.sum(-math.min(mom, 0), len)
    out = (upSum - downSum) / (upSum + downSum)
    cmo = math.abs(out)
    alpha = 2 / (len + 1)
    vidya = 0.0
    vidya := src * alpha * cmo + nz(vidya[1]) * (1 - alpha * cmo)
    vidya
//==========JMA
getJMA(src, len, power, phase) =>
    phase_ratio = phase < -100 ? 0.5 : phase > 100 ? 2.5 : phase / 100 + 1.5
    beta = 0.45 * (len - 1) / (0.45 * (len - 1) + 2)
    alpha = math.pow(beta, power)
    MA1 = 0.0
    Det0 = 0.0
    MA2 = 0.0
    Det1 = 0.0
    JMA = 0.0
    MA1 := (1 - alpha) * src + alpha * nz(MA1[1])
    Det0 := (src - MA1) * (1 - beta) + beta * nz(Det0[1])
    MA2 := MA1 + phase_ratio * Det0
    Det1 := (MA2 - nz(JMA[1])) * math.pow(1 - alpha, 2) + math.pow(alpha, 2) * nz(Det1[1])
    JMA := nz(JMA[1]) + Det1
    JMA
//==========T3
getT3(src, len, vFactor) =>
    ema1 = ta.ema(src, len)
    ema2 = ta.ema(ema1, len)
    ema3 = ta.ema(ema2, len)
    ema4 = ta.ema(ema3, len)
    ema5 = ta.ema(ema4, len)
    ema6 = ta.ema(ema5, len)
    c1 = -1 * math.pow(vFactor, 3)
    c2 = 3 * math.pow(vFactor, 2) + 3 * math.pow(vFactor, 3)
    c3 = -6 * math.pow(vFactor, 2) - 3 * vFactor - 3 * math.pow(vFactor, 3)
    c4 = 1 + 3 * vFactor + math.pow(vFactor, 3) + 3 * math.pow(vFactor, 2)
    T3 = c1 * ema6 + c2 * ema5 + c3 * ema4 + c4 * ema3
    T3
//==========TRIMA
getTRIMA(src, len) =>
    N = len + 1
    Nm = math.round(N / 2)
    TRIMA = ta.sma(ta.sma(src, Nm), Nm)
    TRIMA


src = input.source(close, title='Source', group='Parameters')
len = input.int(17, minval=1, title='Moving Averages', group='Parameters')
out_ma_source = input.string(title='MA Type', defval='ALMA', options=['SMA', 'EMA', 'WMA', 'ALMA', 'SMMA', 'LSMA', 'VWMA', 'DEMA', 'HULL', 'KAMA', 'FRAMA', 'VIDYA', 'JMA', 'TEMA', 'ZLEMA', 'T3', 'TRIM'], group='Parameters')
out_ma = out_ma_source == 'SMA' ? ta.sma(src, len) : out_ma_source == 'EMA' ? ta.ema(src, len) : out_ma_source == 'WMA' ? ta.wma(src, len) : out_ma_source == 'ALMA' ? ta.alma(src, len, 0.85, 6) : out_ma_source == 'SMMA' ? ta.rma(src, len) : out_ma_source == 'LSMA' ? ta.linreg(src, len, 0) : out_ma_source == 'VWMA' ? ta.vwma(src, len) : out_ma_source == 'DEMA' ? getDEMA(src, len) : out_ma_source == 'HULL' ? ta.hma(src, len) : out_ma_source == 'KAMA' ? getKAMA(src, len, 2, 30) : out_ma_source == 'FRAMA' ? getFRAMA(src, len) : out_ma_source == 'VIDYA' ? getVIDYA(src, len) : out_ma_source == 'JMA' ? getJMA(src, len, 2, 50) : out_ma_source == 'TEMA' ? getTEMA(src, len) : out_ma_source == 'ZLEMA' ? getZLEMA(src, len) : out_ma_source == 'T3' ? getT3(src, len, 0.7) : out_ma_source == 'TRIM' ? getTRIMA(src, len) : na


plot(out_ma)

long = close> out_ma and close[1] < out_ma and dayofweek==dayofweek.monday
short = close< out_ma and close[1] > out_ma and dayofweek==dayofweek.monday


stopPer = input.float(10.0, title='LONG Stop Loss % ', group='Fixed Risk Management') / 100
takePer = input.float(30.0, title='LONG Take Profit %', group='Fixed Risk Management') / 100

stopPerShort = input.float(5.0, title='SHORT Stop Loss % ', group='Fixed Risk Management') / 100
takePerShort = input.float(10.0, title='SHORT Take Profit %', group='Fixed Risk Management') / 100


longStop = strategy.position_avg_price * (1 - stopPer)
longTake = strategy.position_avg_price * (1 + takePer)

shortStop = strategy.position_avg_price * (1 + stopPerShort)
shortTake = strategy.position_avg_price * (1 - takePerShort)

// strategy.risk.max_intraday_filled_orders(2) // After 10 orders are filled, no more strategy orders will be placed (except for a market order to exit current open market position, if there is any).

if(longEntry)
    strategy.entry("long",strategy.long,when=long )
    strategy.exit('LONG EXIT', "long", limit=longTake, stop=longStop)
    strategy.close("long",when=dayofweek==dayofweek.sunday)

if(shortEntry)
    strategy.entry("short",strategy.short,when=short )
    strategy.exit('SHORT EXIT', "short", limit=shortTake, stop=shortStop)
    strategy.close("short",when=dayofweek==dayofweek.sunday)



Mehr